3. THE PHYSICAL STATE OF THE
STELLAR INTERIOR

Fundamental assumptions:

e Although stars ewvolve, their properties change so
slowly that at any time it is a good approximation
to neglect the rate of change of these properties.

e Stars are spherical and symmetrical about their cen-
tres; all physical quantities depend just on r, the dis-
tance from the centre:

3.1 The Equation of hydrostatic equilibrium (ZG: 16-1;
CO: 10.1)

Fundamental principle 1: stars are self-
gravitating bodies in dynamical equilibrium

— balance of gravity and internal pressure forces
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Exercise: 3.1 Use dimensional analysis to estimate the
central pressure and central temperature of a star.
— consider a point at r = Ry/2

dP./dr ~ —P./R, pr ~ p = 3M;/(4wR2)
M, ~ M,/2 P. ~ (3/8m)(GM;/R;)

(P)o ~5x 10 Nm 2 or 5x10%atm

Estimate of central temperature:
Assume stellar material obeys the ideal gas equation

P, — P kT,
pIMH

(¢ = mean molecular weight in proton masses; u ~ 1/2 for
fully ionized hydrogen) and using equation (1) to obtain

(Te)o ~2x 107K p, ~ 1.4 x 103kgm™? (c.f. (Ty)o ~ 5800 K)

e Although the Sun has a mean density similar to that
of water, the high temperature requires that it should
be gaseous throughout.

e the average kinetic energy of the particles is higher
than the binding energy of atomic hydrogen so the
material will be highly ionized, i.e is a plasma.



3.2 The Dynamical timescale (ZG: P5-4; CO: 10.4): tp

e Time for star to collapse completely if pressure forces
were negligible (0Mf = —dM g)

(p 6S6r) ¥ = —(GM,/r?) (p 6Sér)

e Inward displacement of element after time t is given
by
s = (1/2) gt* = (1/2) (GM,/r*) t*

e For estimate of tgyn, put s ~ Rs, r ~ Rs, M, ~ Mjg; hence

tayn ~ (2RZ/GM,)"? ~ {3/(2rGp)}'/?

(tdyn)o ~ 2300 s ~ 40 mins

Stars adjust very quickly to maintain a balance between
pressure and gravitational forces.
General rule of thumb: tgy, ~ 1/\/4Gp

3.3 The virial theorem (ZG: P5-2; CO: 2.4)
dP./dr = —~GM,p,/r?

47r3dP, = —(GM, /r)4xr’p,dr
4n[r*P, 08 ps — 3 /ORS P, 47r’dr = — /0 *(GM,/r)4nr?p,dr

Rs Rs
/0 3Pr471-r2dr:/0 (GM,/r)4xr?p,dr

Thermal energy /unit volume u = nfkT/2 = (p/pmy)fkT /2
Ratio of specific heats vy =c,/cy, = (f +2)/f (f=3:v=15/3)

u={1/(y—1)}(pkT/pmy) =P /(v - 1)
3y-1U+02=0

U = total thermal energy; 2 = total gravitational energy.
For a fully ionized, ideal gas y=5/3 and 2U +Q =0
Total energy of star E=U+Q

E=-U=0Q/2
Note: E is negative and equal to /2 or —U. A decrease in
F leads to a decrease in Q but an increase in U and hence

T. A star, with no hidden energy sources, composed of a
perfect gas contracts and heats up as it radiates energy.

Fundamental principle 2: stars have a negative
‘heat capacity’, they heat up when their total en-
ergy decreases




Important itmplications of the virial theorem:

e stars become hotter when their total energy decreases
(— normal stars contract and heat up when there is
no nuclear energy source because of energy losses from
the surface);

e nuclear burning is self-regulating in non-degenerate
cores: e.g. a sudden increase in nuclear burning causes
expansion and cooling of the core: negative feedback
— stable nuclear burning.

3.4 Sources of stellar energy: (CO: 10.3)

Fundamental principle 3: since stars lose energy
by radiation, stars supported by thermal pressure
require an energy source to avoid collapse

Provided stellar material always behaves as a perfect gas,
thermal energy of star ~ gravitational energy.

e total energy available ~ GM? /2R

e thermal time-scale (Kelvin-Helmholtz timescale, the
timescale on which a star radiates away its thermal
energy)):
ten ~ GMS/(2RSLS>
(ttn)o ~ 0.5 x 10% sec ~ 1.5 x 107 years.

e e.g. the Sun radiates L.~ 4 x 10?2 W, and from
geological evidence L. has not changed significantly
over t ~ 10° years

The thermal and gravitational energies of the Sun are
not sufficient to cover radiative losses for the total solar
lifetime.

Only nuclear energy can account for the observed lumi-
nosities and lifetimes of stars

e Largest possible mass defect available when H is trans-
muted into Fe: energy released = 0.008 x total mass.
For the Sun (En)s = 0.008 M c? ~ 10%° J

e Nuclear timescale (tN)o ~ (En)o/Le ~ 101 yr

e Energy loss at stellar surface as measured by the stel-
lar luminosity is compensated by energy release from
nuclear reactions throughout the stellar interior.

L, = /ORS erp, dmrdr

e, is the nuclear energy released per unit mass per sec
and will depend on T,, p, and composition

dL,

1 = Amree (3)

for any elementary shell.

e During rapid evolutionary phases, (i.e. t < tyy,)

dL,
dr

(3a)7

d
= 4nr?p, (sr - T S)

dt

where —TdS/dt is called a gravitational energy term.

SUMMARY III: STELLAR TIMESCALES

1
e dynamical timescale: tqy, ~
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~ 30min (p/1000 kgm *
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~1.5x107yr (M/M;)* (R/Ro)™" (L/Le) ™
e nuclear timescale: tp,. ~ M./M n (Mcz)/L

core mass efﬁciency

~10"yr (M/ M)~

)—1/2

e thermal timescale (Kelvin-Helmholtz): txy ~



3.5 Energy transport (ZG: P5-10, 16-1, CO: 10.4)

The size of the energy flux is determined by the mech-
anism that provides the energy transport: conduction,
convection or radiation. For all these mechanisms the
temperature gradient determines the flux.

e Conduction does not contribute seriously to energy
transport through the interior

> At high gas density, mean free path for particles
<< mean free path for photons.

> Special case, degenerate matter — very effective
conduction by electrons.

e The thermal radiation field in the interior of a star
consists mainly of X-ray photons in thermal equilib-
rium with particles.

e Stellar material is opaque to X-rays (bound-free ab-
sorption by inner electrons)

e mean free path for X-rays in solar interior ~ 1 cm.

e Photons reach the surface by a “random walk” process
and as a result of many interactions with matter are
degraded from X-ray to optical frequencies.

e After N steps of size I, the distribution has spread to
~ +/N1. For a photon to “random walk” a distance R,
requires a diffusion time (in steps of size 1)

R?

tdiff:NXf’z—
c Ic

For ] =1 cm, R; ~ R — tagig ~ 5 x 103 yr.

Energy transport by radiation:

e Consider a spherical shell of area A = 4xr?, at radius
r of thickness dr.

e radiation pressure
1
Piag = —aT* (1)
3
(=momentum flux)

e rate of deposition of momentum in region r — r + dr

. d]-:)rad
r

dr 47r? (i4)

e define opacity k [m?/kg], so that fractional intensity
loss in a beam of radiation is given by
dI

T = —Kp ClX7

where p is the mass density and
T= / kpdx
is called optical depth (note: I =1yexp(—71))
> 1/kp: mean free path
> 7> 1: optically thick
> 7 < 1: optically thin

e rate of momentum absorption in shell L(r)/ckpdr.
Equating this with equation (ii) and using (i):

4 dT
L= —dnr? 20m3C0  (4a)
3kp dr




Energy transport by convection:

e Conwvection occurs in liquids and gases when the tem-
perature gradient exceeds some typical value.

e Criterion for stability against convection
(Schwarzschild criterion)

> consider a bubble with
initial p,, P; rising by an
amount dr, where the
ambient pressure and

rising bubble ambient mediun

d P =P
e 22 density are given by
2 oz, P().
T > the bubble expands

adiabatically, i.e
Y
= P2
P2 =P (Pi)
(v = adiabatic exponent)

P=P,

> assuming the bubble remains in pressure
equilibrium with the ambient medium, i.e.
P, =Py =P(r +dr) ~ Py + (dP/dr)dr,

P\ /7 1 dP 1/
P2 = Pl() ~p1 (1+dr)

P, P dr
~ o PLdP
= Pt p ar
> convective stability if p, — p; > 0 (bubble will sink
back)
p dP dp

e For a perfect gas (negligible radiation pressure)

P = pkT/(pmp)

e Provided p does not vary with position (no changes in
ionization or dissociation)

—[1—(1/9)](T/P)dP/dr > —dT/dr (both negative)

e or magnitude of adiabatic AT /dr > magnitude of ac-
tual AT /dr.

PAT ~-1

TdP = 4

e There is no generally accepted theory of convective
energy transport at present. The stability criterion
must be checked at every layer within a stellar model:
dP/dr from equation (1) and dT/dr from equation (4).

The stability criterion can be broken in two ways:

e Alternatively,

1. Large opacities or very centrally concentrated nu-
clear burning can lead to high (unstable) temper-
ature gradients e.g. in stellar cores.

2. (y—1) can be much smaller than 2/3 for a
monatomic gas, e.g. in hydrogen ionization zones.



Influence of convection

(a) Motions are turbulent: too slow to disturb
hydrostatic equilibrium.

(b) Highly efficient energy transport: high ther-
mal energy content of particles in stellar interior.

(c) Turbulent mixing so fast that composition of
convective region homogeneous at all times.

(d) Actual dT/dr only exceeds adiabatic dT/dr by
very slight amount.

Hence to sufficient accuracy (in convective regions)

dT —1TdP
o722 (4b)
dr v Pdr

This is not a good approximation close to the surface (in
particular for giants) where the density changes rapidly.
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