SUMMARY IV: FUNDAMENTAL PRINCIPLES

e Stars are self-gravitating bodies in dynamical equi-
librium — balance of gravity and internal pressure
forces (hydrostatic equilibrium);

e stars lose energy by radiation from the surface —
stars supported by thermal pressure require an en-
ergy source to avoid collapse, e.g. nuclear energy,
gravitational energy (energy equation);

e the temperature structure is largely determined by the
L mechanisms by which energy is transported from the
core to the surface, radiation, convection, conduction

(energy transport equation);

e the central temperature is determined by the charac-
L teristic temperature for the appropriate nuclear fu-
sion reactions (e.g. H-burning: 107 K; He-burning:

108 K);

. L e normal stars have a negative ‘heat capacity’ (virial
theorem): they heat up when their total energy de-
creases (— normal stars contract and heat up when
there is no nuclear energy source);

e nuclear burning is self-regulating in non-degenerate
cores (virial theorem): e.g. a sudden increase in nu-
clear burning causes expansion and cooling of the core:
negative feedback — stable nuclear burning;

e the global structure of a star is determined by the
stmultaneous satisfaction of these principles — the
local properties of a star are determined by the global
structure.

(Mathematically: it requires the simultaneous solu-
tion of a set of coupled, non-linear differential equa-
tions with mixed boundary conditions.)



4 THE EQUATIONS OF STELLAR STRUCTURE
In the absence of convection:
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4.1 The Mathematical Problem (GZ: 16-2; CO: 10.5)

e P, k. ¢ are functions of p, T, chemical composition
e Basic physics can provide expressions for these.

e In total, there are four, coupled, non-linear, partial
differential equations (+ three constitutive relations)
for seven unknowns: P,p, T M, L, k, e as functions of
r.

e These completely determine the structure of a star of
given composition subject to boundary conditions.

e In general, only numerical solutions can be obtained
(i.e. computer).

e Four (mized) boundary conditions needed:

> at centre: M, =0 and L, =0 at r = 0 (exact)
> at surface: Ls = 4rR20T%; (blackbody relation)
(surface = photosphere, where 7~ 1)
P =(2/3)g/k (atmosphere model)
(sometimes: P(Rs) =0 [rough], but not T(Rs) = 0)

4.1.1 Uniqueness of solution: the Vogt Russell “Theo-
rem” (CO: 10.5)

“For a given chemaical composition, only a single
equilibrium configuration exists for each mass;
thus the internal structure of the star is fixed.”

e This “theorem” has not been proven and is not even
rigorously true; there are known exceptions

4.1.2 The equilibrium solution and stellar evolution:

e If there is no bulk motions in the interior of a star (i.e.
no convection), changes of chemical composition are
localised in regions of nuclear burning The structure
equations (1) to (4) can be supplemented by equations
of the type:

8/8t (composition)y = f(p, T, composition)

e Knowing the composition as a function of M at a time
to we can solve (1) to (4) for the structure at to. Then

(composition)y; .5 = (composition)m ¢+
9/t (composition)y dt
e Calculate modified structure for mew composition
and repeat to discover how star evolves (not valid if

stellar properties change so rapidly that time depen-
dent terms in (1) to (4) cannot be ignored).

4.1.3 Convective regions: (GZ: 16-1; CO: 10.4)
e Equations (1) to (3) unchanged.

e for efficient convection (neutral buoyancy):
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e L,,q4 is calculated from equation (4) once the above
have been solved.



4.2 THE EQUATION OF STATE
4.2.1 Perfect gas: (GZ: 16-1: CO: 10.2)

P—=NKT =" kT
pImp

N is the number density of particles; p is the mean par-
ticle mass in units of my. Define:

X = mass fraction of hydrogen (Sun: 0.70)
Y = mass fraction of helium (Sun: 0.28)

Z = mass fraction of heavier elements (metals) (Sun:
0.02)

e X+Y+Z=1

o If the material is assumed to be fully tonized:

Element No. of atoms No. of electrons
Hydrogen Xp/my Xp/my

Helium Y p/4mp 2Y p/4my
Metals [Zp/(Amp)] (1/2)AZp/(Amyy)

e A represents the average atomic weight of heavier el-
ements; each metal atom contributes ~ A /2 electrons.

e Total number density of particles:

N=(2X+3Y/4+7Z/2)p/myg
> (1/p)=2X+3/4Y +1/27Z

e This is a good approximation to u except in cool, outer
regions.

e When Z is negligible: Y =1 - X; p=4/(3 + 5X)
e Inclusion of radiation pressure in P:
P = pkT/(pmpg) + aT*/3.
(important for massive stars)

4.2.2 Degenerate gas: (GZ: 17-1; CO: 15.3)

e First deviation from perfect gas law in stellar interior
occurs when electrons become degenerate.

e The number density of electrons in phase space is lim-
ited by the Pauli exclusion principle.

n. dpxdpydp, dxdydz < (2/ h?) dpxdpydp, dxdydz

e In a completely degenerate gas all cells for momenta
smaller than a threshold momentum p( are completely
filled (Fermi momentum).

e The number density of electrons within a sphere of
radius pp in momentum space is (at T = 0):

N, = [(2/h*) 4rp?*dp = (2/h®)(47/3)p}
e From kinetic theory
P.=(1/3) [ pv(p)n(p)dp

(a) Non-relativistic complete degeneracy:

v(p) = p/m, for all p
P, =(1/3) [ (p®/m)(2/h?) 4wp? dp

— {8x/(15m,h*)}p§ = {h®/(20m,)}(3/m)*/* NZ/3,



(b) Relativistic complete degeneracy:
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e Also No = (X+Y/2+4+Z/2)p/mu = (1/2)(1 + X) p/muy.

e For intermediate regions use the full relativistic ex- 5|k 2
pression for v(p). .
e For ions we may continue to use the non-degenerate 4 o
. - WY
equation: 4

b Pions = (l/ﬂions)(ka/mH) where (1//-Li0ns) =X + Y/4
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Conditions where degeneracy is important: logp (gcm-3)

Temperature-density diagram for the equation of state

(a) Non-relativistic — interiors of white dwarfs; degener- (Schwar zschild 1958)

ate cores of red giants.

(b) Relativistic - very high densities only; interiors of
white dwarfs.



4.8 THE OPACITY (GZ: 10-2; CO: 9.2)
The rate at which energy flows by radiative transfer is
determined by the opacity (cross section per unit mass

[m? /kg])
dT/dr = —3kLp/(16macr®T?) (4)

In degenerate stars a similar equation applies with the
opacity representing resistance to energy transfer by
electron conduction.

Sources of stellar opacity:

1. bound-bound absorption (negligible in interiors)
2. bound-free absorption
3. free-free absorption

4. scattering by free electrons

e usually use a mean opacity averaged over frequency,
Rosseland mean opacity (see textbooks).

Approximate analytical forms for opacity:
High temperature: k = k; = 0.020m?kg ! (1 + X)

Intermediate temperature: &k = kopT 3% (Kramer’s
law)

Low temperature: k = k3p'/?T*

® K1, k2, k3 are constant for stars of given chemical com-
position but all depend on composition.
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