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STRUCTURE OF THE SUN

• The Sun is the only star for which we can measure

internal properties → test of stellar structure theory

• Composition (heavy elements) from meteorites

• Density, internal rotation from helioseismology

• Central conditions from neutrinos

HELIOSEISMOLOGY

• The Sun acts as a resonant cavity, oscillating in mil-

lions of (acoustic, gravity) modes (like a bell)

→ can be used to reconstruct the internal density struc-

ture (like earthquakes on Earth)

• oscillation modes are excited by convective eddies

• periods of typical modes: 1.5min to 20min

• velocity amplitudes: ∼ 0.1m/s

• need to measure Doppler shifts in spectral lines rela-

tive to their width to an accuracy of 1:106

. possible with good spectrometers and long integra-

tion times (to average out noise)

Results

• density structure, sound speed

• depth of outer convective zone: ∼ 0.28R¯

• rotation in the core is slow (almost like a solid-body)

→ the core must have been spun-down with the enve-

lope (efficient core–envelope coupling)
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HELIOSEISMOLOGY

SOLAR NEUTRINOS

• Neutrinos, generated in solar core, escape from the

Sun and carry away 2− 6% of the energy released in

H-burning reactions

• they can be observed in underground experiments

→ direct probe of the solar core

• neutrino-emitting reactions (in the pp chains)

1H +
1H →

2D + e+ + � Emax

�

= 0.42Mev
7Be + e− →

7Li + � Emax

� = 0.86Mev
8B →

8Be + e+ + � Emax

� = 14.0Mev

• The Davis experiment (starting around 1970) has

shown that the neutrino flux is about a factor of 3

lower than predicted → the solar neutrino problem

The Homestake experiment (Davis)

• neutrino detector: underground tank filled with 600

tons of Chlorine (C2Cl4 : dry-cleaning fluid)

• some neutrinos react with Cl

� e +
37Cl→ 37Ar + e− − 0.81Mev

• rate of absorption ∼ 3× 10−35 s−1 per 37Cl atom

• every 2 months each 37Ar atom is filtered out of the

tank (expected number: 54; observed number: 17)

• caveats

. difficult experiment, only a tiny number of the neu-

trinos can be detected

. the experiment is only sensitive to the most en-

ergetic neutrinos in the 8B reaction (only minor

reaction in the Sun)
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Model Predictions

Homestake Mine

The Davis Neutrino Experiment

Proposed Solutions to the Solar Neutrino Problem

• dozens of solutions have been proposed

1) Astrophysical solutions

. require a reduction in central temperature of about

5% (standard model: 15.6× 106K)

. can be achieved if the solar core is mixed (due to

convection, rotational mixing, etc.)

. if there are no nuclear reactions in the centre (in-

ert core: e.g. central black hole, iron core, degen-

erate core)

. if there are additional energy transport mecha-

nisms (e.g. by WIMPS = weakly interacting par-

ticles)

. most of these astrophysical solutions also change

the density structure in the Sun → can now be

ruled out by helioseismology

2) Nuclear physics

. errors in nuclear cross sections (cross sections

sometimes need to be revised by factors up to

∼ 100)

. improved experiments have confirmed the nuclear

cross sections for the key nuclear reactions
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3) Particle physics

. all neutrinos generated in the Sun are electron neu-

trinos

. if neutrinos have a small mass (actually mass dif-

ferences), neutrinos may change type on their path

between the centre of the Sun and Earth:

neutrino oscillations, i.e. change from electron

neutrino to � or � neutrinos, and then cannot be

detected by the Davis experiment

. vacuum oscillations: occur in vacuum

. matter oscillations (MSW [Mikheyev-Smirnov--

Wolfenstein] effect): occur only in matter (i.e. as

neutrinos pass through the Sun)

RECENT EXPERIMENTS

• resolution of the neutrino puzzle requires more sensi-

tive detectors that can also detect neutrinos from the

main pp-reaction

1) The Kamiokande experiment

(also super-Kamiokande)

. uses 3000 tons of ultra-pure water (680 tons active

medium) for

� + e− → � + e− (inelastic scattering)

. about six times more likely for � e than �
�

and � �

. observed flux: half the predicted flux (energy de-

pendence of neutrino interactions?)



Observatory
The Sudbury Neutrino

1000 tons of heavy water

2) The Gallium experiments (GALLEX, SAGE)

. uses Gallium to measure low-energy pp neutrinos

directly

� e +
71Ga→71Ge + e− − 0.23Mev

. results: about 80± 10 SNU vs. predicted 132± 7

SNU (1 SNU: 10−36 interactions per target atom/s)

3) The Sudbury Neutrino Observatory (SNO)

. located in a deep mine (2070 m underground)

. 1000 tons of pure, heavy water (D2O)

. in acrylic plastic vessel with 9456 light sensors/photo-

multiplier tubes

. detect Cerenkov radiation of electrons and pho-

tons from weak interactions and neutrino-electron

scattering

. results (June 2001): confirmation of neutrino os-

cillations (MSW effect)?


