The Origin of the Elements

Literature:

- H. Reeves, Online lectures on Primordial Nucleosynthesis, http://nedwww.ipac.caltech.edu/level5/Sept01/Reeves/Reeves2.html
- Principles of Stellar Evolution and Nucleosynthesis, Donald Clayton (University of Chicago Press), classical standard graduate text
- Supernovae and Nucleosynthesis, David Arnett (Princeton University Press)

Main properties

- heavier elements are more difficult to form because of the larger Coulomb barrier, i.e. require higher energies (temperatures) during nuclear-burning phases in stars
- iron peak: most tightly bound nuclei
- the origin of light elements? (Li, Be, B are less tightly bound than He, C)
- neutron-rich elements beyond the iron peak require neutron captures
• the odd-even effect: elements with odd \(Z \) are rarer

• magic numbers: (from nuclear shell structure) elements with \(Z, N = 2, 8, 20, 28, 50, 82, 126 \) are more stable → doubly magic nuclei are particularly stable: e.g. He \((Z = N = 2) \), O \((Z = N = 8) \), Ca \((Z = N = 20) \), Ni \((Z = N = 28) \)

Big Bang Nucleosynthesis

Neutrino Decoupling

- initially at \(T > 1 \text{MeV} \), all weak interactions occur in statistical equilibrium
 \[
 \nu + n \leftrightarrow p + e; \quad \bar{\nu} + p \leftrightarrow n + e; \quad n \leftrightarrow p + e + \bar{\nu}
 \]
 → the neutron-proton ratio is determined by statistical equilibrium, i.e. the Boltzmann distribution \(n/p = \exp(-\Delta M/kT) \), where \(\Delta M = 1.293 \text{MeV} \).

- the \(n/p \) ratio is determined by the temperature at which neutrinos decouple
 - expansion timescale: \(t_{\text{exp}} \propto (G\rho)^{-1/2} \propto T^{-2} \),
 (since \(\rho \propto T^4 \) in the radiation-dominated phase)
 - weak reaction timescale: \(t_{\text{weak}} \propto T^{-5} \),
 → neutrinos decouple at \(T \simeq 10^{10} \text{K} \simeq 0.86 \text{MeV} \)
 → \(n/p \approx 0.223 \)
• the deuterium reaction $p + n \leftrightarrow ^2D + \gamma$ remains in equilibrium till the temperature has dropped to about 0.1 MeV (10^9 K), reached after about 4 minutes

 ▶ during this period, the n’s undergo β decay with a half life of 617 s

 \rightarrow n/p drops to ~ 0.164

The Phase of Primordial Nucleosynthesis ($T < 0.1$ MeV)

• primordial reactions:

 $p + n \rightarrow ^2D + \gamma$
 $^2D + p \rightarrow ^3He + \gamma$
 $^2D + n \rightarrow ^3H + \gamma$
 $^3He + ^3He \rightarrow ^4He + 2p$

• there are no stable nuclides with mass 5 or 8 \rightarrow limits buildup of heavier elements

• some light elements form through reactions like

 $^4He + ^3H \rightarrow ^7Li + \gamma$
 $^4He + ^3He \rightarrow ^7Be + \gamma$
 $^7Be + e \rightarrow ^7Li + \nu$

• the final abundance ratios depend on

 ▶ the n/p ratio determined by the decoupling temperature
 ▶ the competition of β decays and the rate of n + p reactions, which depends on the the nucleon to photon ratio η (the n + p rate depends on the nucleon/baryon density)
 ▶ at low nucleon density (η): neutrons β decay
 ▶ at high nucleon density (the realistic case): most neutrons are incorporated into He

 o number of He nuclei: $1/2$ n (n: number of initial neutrons; 2 neutrons/He nucleus)
 o number of H nuclei: p $-$ n (p: number of initial protons)
 o helium mass fraction:

 $Y = \frac{4 \times 1/2n}{4 \times 1/2n + (p - n)} = \frac{2n}{p + n} = \frac{2n/p}{1 + n/p} = 0.28$

 (for n/p = 0.164)
- The production of deuterium and hence all other light nuclides depends strongly on the baryon density
 - At high η, deuterium is efficiently destroyed by p or n captures (to produce nuclides of mass number 3)
 - Astronomical observations fix η in the standard model to $3 - 15 \times 10^{-10}$ (assumes n/p ratio is fixed by standard particle physics; Universe is homogeneous)
- Baryon mass fraction: $\Omega \sim 0.01 - 0.02$

Stellar Nucleosynthesis

- Hydrostatic burning during the core evolution of the star builds up most elements up to Fe at ever higher temperatures
- Schematically: $4H \rightarrow \text{He}$, $3\text{He} \rightarrow \text{C}$, $2\text{C} \rightarrow \text{Mg}$, $2\text{O} \rightarrow \text{S, Si, Si} \rightarrow \text{Fe}$
- Onion-like presupernova structure
- Core collapses and elements in core are locked up, rest is ejected into the ISM (in particular O)
- Also stellar wind ejection during AGB/supergiant phases

Final Structure of 8 M$_\odot$ Helium Core (Nomoto)
Silicon Burning and Explosive Nucleosynthesis

- after oxygen burning: mainly S, Si
- at $T \sim 2 \times 10^9$ K, elements start to photodisintegrate and eject light particles, in particular p’s (γ, p), n’s (γ, n) and α’s (γ, α) that can react with other nuclei
- the least tightly bound nuclei are stripped more easily
- all reactions occur in both directions (i.e. forward and reverse reaction) → abundance pattern approaches nuclear statistical equilibrium (NSE)

- there is a net excess of α capture reactions which build up alpha-rich elements (α-process)
- 28Si + α → 32S + α → 36Ar + α → 40Ca
 + 2α → 48Ti + α → 52Cr + α → 56Fe
- builds up the most stable elements 54Fe or 56Fe (depends on neutron excess)
- how far the “flow” proceeds depends on the temperature (which determines the flow rate) and the duration of the phase
Explosive Burning (e.g. during a supernova)
- carbon burning close to hydrostatic equilibrium
- but: oxygen and silicon burning do not necessarily establish statistical equilibrium
- at high densities: close to NSE
- at low densities (after expansion): incomplete burning, abundance pattern freezes out → intermediate-mass elements
- reproduces the solar abundance pattern reasonably well (by nuclear physics standards)

Supernova Nucleosynthesis
- different supernova types produce, different abundance patterns
 - core-collapse supernovae: most Fe is locked up in the core (at most ~ 0.1 M☉ can be ejected)
 - large ejection of oxygen
 - thermonuclear explosions: dominant producers of Ni (which decays into Fe; ~ 0.6 M☉)
 - different timescales for core collapse supernovae (~ 10⁷ yr) and thermonuclear explosions (up to ~ 10⁹ yr)
 - oxygen/iron ratio evolves with time
 - observational constraint on supernova explosions?
- complication: hypernovae eject both Fe and O and a lot of α-rich elements (Ca, Ti), but are probably not as common at early times (?)
Production of Heavy Nuclei (A \geq 60)

- produced by endothermic reactions

\[(Z, A) + n \rightarrow (Z, A + 1) + \gamma \]

- consider neutron-capture reactions (on Fe-peak seed nuclei)

\[(Z, A) + n \rightarrow (Z, A + 1) + \gamma \]

- if (Z, A+1) is stable, it waits until it captures another neutron
- if (Z, A+1) is unstable to \(\beta \) decay (typically \(t_{\text{decay}} \sim 10^5 - 10^7 \) s), the further chain depends on \(t_{\text{decay}} \) and \(t_{\text{capture}} \)

\[t_{\text{decay}} \ll t_{\text{capture}}: \text{s-process} \]

(slow neutron-capture process)

\(\beta \) decay, s-process follows the “valley of \(\beta \) stability”

\[t_{\text{decay}} \gg t_{\text{capture}}: \text{r-process} \]

(rapid neutron-capture process)

- if (Z, A+1) can capture further neutrons and produce elements (far) away from the valley of \(\beta \) stability
- eventually these elements \(\beta \) decay and produce stable neutron-rich isotopes
Astrophysical Sites for the s- and r-process

- **s-process** requires relatively low neutron densities \((n \lesssim 10^{26} \text{ m}^{-3}) \)

- **r-process** requires relatively high neutron densities \((n \gtrsim 10^{26} \text{ m}^{-3}) \)

- **s-process**
 - possible neutron sources (during stellar He burning) \(^{13}\text{C}(\alpha, n)^{16}\text{O}\) or \(^{22}\text{Ne}(\alpha, n)^{25}\text{Mg}\)
 - first reaction requires \(^{13}\text{C}\) which is relatively rare, but produced during hydrogen burning via \(^{12}\text{C}(p, \gamma)^{13}\text{N} (e^+ \nu)^{13}\text{C}\) (CN cycle)
 - requires simultaneous hydrogen/helium burning or injection of freshly produced \(^{13}\text{C}\) into He-burning layers
 - promising site: thermally pulsing AGB stars (with alternating hydrogen and helium burning)
 - s-stars, barium stars
 - \(^{22}\text{Ne} + \alpha\) only occurs at very high temperatures (e.g. in the cores of massive stars)

- **r-process**
 - requires explosive burning
 - e.g. in supernova explosion behind the supernova shock (probably not, conditions are only suitable for too short a time)
 - neutron star/neutron star or neutron star/black hole mergers accompanied with very high neutron densities and the formation of neutron-rich nuclei
The p process:

- the origin of **proton-rich** elements is not well understood
- need e.g.
 \[
 \begin{align*}
 (A, Z) + p &\rightarrow (A + 1, Z + 1) + \gamma \\
 (A, Z) + \gamma &\rightarrow (A - 1, Z) + n
 \end{align*}
 \]
- possible site: Thorne-Żytkow objects (red supergiants with neutron cores) where protons are injected into the burning region at very high temperature \((T \sim 10^9 \text{ K})\)

Production of light elements

- by **spallation** of intermediate nuclei (e.g. O, N, C) by cosmic rays
 \[
 \{p, \alpha\} + \{C, N, O\} \rightarrow ^{6}\text{Li}, ^{7}\text{Li}, ^{7}\text{Be}, ^{9}\text{Be}, ^{10}\text{Be}, ^{10}\text{B}, ^{11}\text{B}
 \]

- origin of solar \(^7\text{Li}\) unknown, big bang nucleosynthesis and cosmic-ray spallation cannot produce the observed solar abundance

→ explosive H/He burning in giants?