STELLAR STRUCTURE AND EVOLUTION

OBSERVABLE PROPERTIES OF STARS Basic large-scale observable properties:

> Luminosity Surface temperature Radius Mass

Further observable:

Spectrum ... yields information about surface chemical composition and gravity

Evidence from:

- Individual stars
- Binary systems
- Star clusters....these reveal how stars evolve with time
- Nuclear physics...energy source, synthesis of heavy elements

No direct information about physical conditions in stellar interiors (except from helioseismology and solar neutrinos)

No direct evidence for stellar evolution.....typical timescale $10^6 - 10^9$ years......(except for a few very unusual stars and supernovae)

LUMINOSITY

$${f L}_{
m s}=\int_{0}^{\infty}L_{oldsymbol{\lambda}}d\lambda=4\pi R_{
m s}^{2}\int_{0}^{\infty}F_{oldsymbol{\lambda}}\,d\lambda$$

where F_{λ} is the *radiative flux* at the stellar surface. Energy may also be lost in the form of neutrinos or by direct mass loss (generally unobservable).

Astronomers measure:

 $\mathbf{f}_{\lambda} = (\mathbf{R}_{\mathrm{s}}/\mathbf{D})^2 \, \mathbf{F}_{\lambda}$ at Earth's surface

- \bullet To obtain ${\rm L}_{\lambda}$ we must know the star's $distance \; D$ and correct for:
 - b absorption in the Earth's atmosphere (standard methods)
 - > absorption in interstellar space (negligible for nearby stars)
- Measurements from the *Hipparcos satellite* (1989–1993) have yielded *parallaxes* accurate to 0.002 arcsec for about 100,000 stars. The largest stellar parallax (Proxima Centauri) is 0.765 arcsec.

THE UBV SYSTEM

STELLAR MAGNITUDES

- measure stellar flux (i.e. $f = L/4\pi D^2$, L: luminosity, D: distance)
 - $ho ~ for ~ Sun: ~ {
 m L}_{\odot} = 3.86 imes 10^{26} ~ {
 m W}, ~ {
 m f} = 1.360 imes 10^3 ~ {
 m W} ~ {
 m m}^{-2}$ (solar constant)
 - \triangleright luminosity measurement requires distance determination (1A.U. = $1.50\times 10^{11}\,m)$
- \bullet define apparent magnitudes of two stars, $m_1,\,m_2,\,$ by $m_1-m_2=2.5\log f_2/f_1$
- zero point: Vega (historical) \rightarrow m_{\odot} = -26.82
- to measure luminosity define absolute magnitude M to be the apparent magnitude of the object if it were at a distance 10 pc (1 pc = 3.26 light years = 3.09×10^{16} m)
- define bolometric magnitude as the absolute magnitude corresponding to the luminosity integrated over all wavebands; for the Sun $M^{\rm bol}_{\odot} = 4.72$
- in practice, the total luminosity is difficult to measure because of atmospheric absorption and limited detector response
- define magnitudes over limited wavelength bands

• the UBV system (ultraviolet, blue, visual) which can be extended into the red, infrared (RI)

approximate	notation for magnitudes			
region	apparent	absolute	solar value	
ultraviolet	\mathbf{U} or $\mathbf{m}_{\mathbf{U}}$	$\mathbf{M}_{\mathbf{U}}$	5.61	
blue	B or m _B	$\mathbf{M}_{\mathbf{B}}$	5.48	
visual	\mathbf{V} or $\mathbf{m}_{\mathbf{V}}$	${f M_V}$	4.83	
(near yellow)				

- colours: relative magnitudes in different wavelength bands, most commonly used: B V, U B
- define bolometric correction: $B.C. = M_{bol} M_V$ (usually tabulated as a function of B - V colour)
- visual extinction A_V : absorption of visual star light due to extinction by interstellar gas/dust
- distance modulus: $(m M)_V = 5 \times \log D / 10 pc$
- summary: $M_V = -2.5 \log L / L_{\odot} + 4.72 + B.C. + A_V$

Nearby Stars to the Sun (from N	Norton 2000)
---------------------------------	--------------

Common Name	Distance	Magnitudes s		spectral
(Scientific Name)	(light year)	apparent	absolute	\overline{type}
Sun		-26.8	4.8	G2V
Proxima Centauri	4.2	11.05 (var)	15.5	M5.5V
(V645 Cen)				
Rigel Kentaurus	4.3	-0.01	4.4	G2V
(Alpha Cen A)				
(Alpha Cen B)	4.3	1.33	5.7	K1V
Barnard's Star	6.0	9.54	13.2	M3.8V
Wolf 359	7.7	13.53 (var)	16.7	M5.8V
(CN Leo)				
(BD +36 2147)	8.2	7.50	10.5	M2.1V
Luyten 726-8A	8.4	12.52 (var)	15.5	M5.6V
(UV Cet A)				
Luyten 726-8B	8.4	13.02 (var)	16.0	M5.6V
(UV Cet B)				
Sirius A	8.6	-1.46	1.4	A1V
(Alpha CMa A)				
Sirius B	8.6	8.3	11.2	DA
(Alpha CMa B)				
Ross 154	9.4	10.45	13.1	M4.9V

- Accurate information about *relative luminosities* has been obtained from measuring relative apparent brightnesses of *stars within clusters*.
- Some wavelengths outside the visible region are completely absorbed by the *Earth's atmosphere*. Hence we must use theory to estimate contributions to L_s from obscured spectral regions until *satellite measurements* become available.
- Observations of clusters show that *optical luminosities of stars* cover an enormous range:

$$10^{-4}~{
m L}_{\odot} < {
m L}_{
m s} < 10^{6}~{
m L}_{\odot}$$

• By direct measurement:

$$L_{\odot} = (3.826 \pm 0.008) \times 10^{26} \ W.$$

- The *luminosity function* for nearby stars shows the overwhelming preponderance of intrinsically faint stars in the solar neighbourhood. Highly luminous stars are very rare: the majority of nearby stars are far less luminous than the Sun.
- Initial mass function (IMF): distribution of stellar masses

$$f(M) dM \propto M^{-\gamma} dM$$
 $\gamma \simeq 2.35$ [Salpeter] to 2.5

(good for stars more massive than $\gtrsim 0.5 \, \mathrm{M}_\odot$).

- \rightarrow most of the mass in stars is locked up in low-mass stars (brown dwarfs?)
- \triangleright but most of the luminosity comes from massive stars.

STELLAR SURFACE TEMPERATURES

Various methods for ascribing a temperature to the stellar photosphere:

1. Effective temperature, T_{eff} (equivalent black-body temperature):

$$\mathrm{L_s} = 4\pi \mathrm{R_s^2} \int \mathrm{F}_{oldsymbol{\lambda}} \mathrm{d}_{oldsymbol{\lambda}} = 4\pi \mathrm{R_s^2} \sigma \mathrm{T_{eff}^4}$$

Direct determination of $T_{\rm eff}$ not generally possible because $R_{\rm s}$ is not measurable except in a few cases. $T_{\rm eff}$ can be derived indirectly using model atmospheres.

- 2. Colour temperature
 - ▷ Match shape of observed continuous spectrum to that of black body,

$$\Phi(\lambda) = rac{2\mathbf{hc}^2}{\lambda^5} rac{1}{\mathrm{exp}(\mathbf{hc}/\lambda\mathbf{kT})-1}.$$

 \triangleright An empirical relationship between colour temperature and *B*-V has been constructed (B and V are magnitudes at $\lambda_{\rm B}$ and $\lambda_{\rm V}$ respectively).

Figure 1.11 Spectrum of blackbody radiation at various temperatures (taken from Kraus, J. D. 1966, Radio Astronomy, McGraw-Hill Book Company)

Figure 9.5 The spectrum of the Sun. The dashed line is the curve of an ideal blackbody having the Sun's effective temperature. (Figure from Aller, *Atoms, Stars, and Nebulae*. Revised Edition, Harvard University Press, Cambridge, MA, 1971.)

SPECTRAL CLASSIFICATION

- Strengths of spectral lines are related to *excitation temperature* and *ionization temperature* of photosphere through Boltzmann and Saha equations.
- An empirical relation between spectral class and surface temperature has been constructed (e.g. Sun: G2 \rightarrow 5,800 K).
- $\bullet~L_{\rm s}~and~T_{\rm eff}$ are the key quantities output by stellar structure model calculations.
- \bullet Range of $T_{\rm eff}\colon$ 2000 K $< T_{\rm eff} < 100,000$ K

Spectral Classification

Luminosity Classes

Class	Type of Star
Ia	Luminous supergiants
Ib	Less Luminous supergiants
II	Bright giants
III	Normal giants
\mathbf{IV}	Subgiants
\mathbf{V}	Main-sequence stars
	(Dwarfs)
VI, sd	Subdwarfs
D	White Dwarfs

- The luminosity class is essentially based on the *width* of spectral lines
- narrow lines \rightarrow low surface pressure \rightarrow low surface gravity \rightarrow big star
- supergiants have narrow lines, white dwarfs (the compact remnants of low-/intermediate-mass stars) very broad lines

L Stars/T Dwarfs

• recent extension of the spectral classification for very cool ($T_{\rm eff} < 2500 \, {\rm K}$) objects, mainly brown dwarfs (?) (low-mass objects many with ${\rm M} < 0.08 \, {\rm M}_{\odot}$ which are not massive enough for nuclear reactions in the core)

Spectra of Dwarf Stars (Luminosity Class V)

STELLAR ATMOSPHERES

- Continuum spectrum: defines effective temperature (T_{eff}) and photospheric radius (R_{ph}) through $L_{bol} = 4\pi R_{ph}^2 \sigma T_{eff}^4$
- *absorption lines* in the spectrum are caused by cooler material above the photosphere
- *emission lines* are caused by hotter material above the photosphere
- *spectral lines* arise from transitions between the bound states of atoms/ions/molecules in the star's atmosphere
- spectral lines contain a wealth of information about
 - $\triangleright \text{ the } temperature \text{ in regions where the lines are pro$ $duced} \rightarrow \text{ spectral type}$
 - \triangleright the chemical composition \rightarrow nucleosynthesis in stars
 - \triangleright pressure \rightarrow surface gravity \rightarrow luminosity class
 - *stellar rotation:* in rapidly rotating stars, spectral lines are Doppler broadened by rotation
 - *orbital velocities* (due to periodic Doppler shifts) in binaries

STELLAR MASSES

Only one direct method of mass determination: study dynamics of binary systems. By *Kepler's third law:*

 $(M_1 + M_2)/M_\odot = a^3/P^2$

a = semi-major axis of apparent orbit in astronomical units; P = period in years.

- a) Visual binary stars:
 - ▷ Sum of masses from above
 - \triangleright Ratio of masses if absolute orbits are known

 $\mathbf{M_1}/\mathbf{M_2} = \mathbf{a_2}/\mathbf{a_1} \qquad \mathbf{a} = \mathbf{a_1} + \mathbf{a_2}$

- \triangleright Hence \mathbf{M}_1 and \mathbf{M}_2 but only a few reliable results.
- b) Spectroscopic binary stars:
 - $\label{eq:constraint} \begin{array}{l} \triangleright \mbox{ Observed } \textit{radial velocity } \textit{yields } \textit{v} \textit{sini} $ (inclination $$ i of orbit in general unknown). From both velocity curves, we can obtain M_1/M_2 and $M_1 \sin^3i$ and $M_2 \sin^3i$ i.e. lower limits to mass (since sini < 1). \end{array}$
 - \triangleright For spectroscopic eclipsing binaries i ~ 90°; hence determination of M_1 and M_2 possible. About 100 good mass determinations; all main-sequence stars.
- Summary of mass determinations:
 - Apart from main-sequence stars, reliable masses are known for 3 white dwarfs a few giants
 - \triangleright Range of masses: $0.1 M_{\odot}~<~M_{\rm s}~<~200 M_{\odot}$.

STELLAR RADII

In general, stellar angular diameters are too small to be accurately measurable, even for nearby stars of known distance.

$$\mathbf{R}_{\odot} = 6.96 \times 10^5 \ \mathrm{km}$$

- Interferometric measurements:
 - a) Michelson stellar interferometer results for 6 stars $({\bf R}_{\rm s}>>{\bf R}_{\odot})$
 - b) Intensity interferometer results for 32 stars (all hot, bright main-sequence stars with $R_{\rm s}\sim R_{\odot})$
- Eclipsing binaries:
 - b Measure periodic brightness variations
 - ▷ reliable radii for a few hundred stars.
- Lunar occultations:
 - Measure diffraction pattern as lunar limb occults star
 - ▷ results for about 120 stars.

Optical Interferometry (WHT, COAST): Betelgeuse

- Indirect methods:
 - \triangleright e.g. use of $L_s=4\pi R_s^2~T_{eff}^4$ with estimates of L_s and $T_{eff}.$
- Summary of measurements of radii:
 - $\triangleright \ \textit{Main-sequence stars} \ \text{have similar radii to the Sun;} \\ \mathbf{R}_{s} \ \text{increases slowly with surface temperature.}$
 - \triangleright Some stars have much smaller radii $\sim 0.01 R_{\odot}$ (white dwarfs)
 - \triangleright Some stars have much larger radii $> 10 R_{\odot}$ (giants and supergiants)
 - \triangleright Range of radii: $0.01R_{\odot}~<~R_{\rm s}~<~1000R_{\odot}$.

Stellar Structure and Stellar Evolution

- *physical laws* that determine the equilibrium structure of a star
- stellar birth in protostellar clouds $\rightarrow planet$ formation in circumstellar discs, binarity, brown dwarfs
- stellar evolution driven by successive phases of nuclear burning, \rightarrow giants, supergiants
- final stages of stars:
 - \triangleright white dwarfs and planetary nebula ejection $(M \lesssim 8 \, M_{\odot})$
 - $hinspace{1.5} > supernova explosions$ for massive stars $(M \gtrsim 8 M_{\odot})$, leaving neutron star (pulsar), black-hole remnants

Stellar Atmospheres

- basic physics that determines the structure of stellar atmospheres, line formation
- modelling spectral lines to determine *atmospheric* properties, chemical composition