
Astrophysics Graduate Course
Solving Ordinary Differential Equations Numerically

(Ph. Podsiadlowski, Oxford, MT05)

1 Textbooks

• Numerical Recipes by Press et al., chapters 16 and 17: good standard reference with
powerful, up-to-date, ready-to-use algorithms.

• Applied Numerical Analysis by C. F. Gerald, P. O. Wheatley (Addison-Wesley), chapter
5: good basic introduction to the problem.

2 General Principles

A set of coupled ordinary differential equations (of arbitrary order) can be written as a set of
coupled, first-order differential equations of the form

dyi

dx
= fi(x, y1, y2, . . . , yN) (i = 1, . . . , N),

where x is the independent variable, the yi’s N dependent variables, and fi are functions of
these N + 1 variables (example: one second-order equation can be reduced to two first-order
equations by defining a new dependent variable y2 = dy1/dx).

General considerations in designing a numerical scheme:

• accuracy: controlling the local and global errors;

• efficiency: using a higher-order scheme may require many fewer integration steps;

• stability: iterative schemes may not converge, treatment of singularities;

• hardware issues: e.g. memory constraints, speed of I/O operations involving harddisk
access.

3 Simple Integration Schemes

Consider a simple first-order equation (generalizations are trivial)

dy

dx
= f(x, y).
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3.1 Euler method

Start integration at some point x0 and advance integration in steps of length h. If xn and yn

are the values of x and y after n steps, one can find the value of yn+1 from

yn+1 = yn + h f(xn, yn) + O(h2).

This simple scheme is not very efficient; it produces a local error of order h2, implying a global
error of order h.

3.2 Runge-Kutta methods

To obtain a better scheme, one can Taylor expand yn+1(x + h) to second order

yn+1 = yn + hf(xn, yn) + (h2/2) f ′(xn, yn),

and use the ansatz

yn+1 = yn + ak1 + bk2,

k1 = hf(xn, yn),

k2 = hf(xn + αh, yn + βk1).

By comparing these two expressions, these can be made identical (up to second order), e.g.,
if a = b = 1/2, α = β = 1. This scheme gives a local error of order h3 (global error: h2).

Fourth-order Runge-Kutta method

A powerful commonly used scheme uses a Taylor expansion to fourth order leading to

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4),

k1 = hf(xn, yn),

k2 = hf(xn + 1/2h, yn + 1/2k1),

k3 = hf(xn + 1/2h, yn + 1/2k2),

k4 = hf(xn + h, yn + k3).

This scheme gives local errors of order h5 and global errors of order h4. In order to obtain an
estimate of the numerical error, one can use schemes that use five estimates of ∆y (Runge-
Kutta-Merson) or six estimates (Runge-Kutta-Fehlberg). This allows to vary the step size
subject to chosen accuracy criteria.

3.3 Bulirsch-Stoer method

For differential equations that only involve smooth functions and have no singularities, more
powerful methods have been developed in recent years, e.g. the Bulirsch-Stoer method, that
uses rational function extrapolations and a sequence of smaller and smaller substeps which
are then extrapolated to zero stepsize; this allows very large main steps.

2



4 Complications

4.1 Singularities and discontinuities

Singularities and discontinuities generally need special attention. For example, singular bound-
ary conditions (dy/dx = x, where x0 = 0) can often be replaced by non-singular boundary
conditions by Taylor-expanding the equation(s) about the singular point and shifting the
boundary point by a small ∆x (in the example use y(∆x) = 0.5(∆x)2). For unresolved shocks,
use an artificial viscosity term to ensure the Rankine-Hugoniot relations across shocks.

4.2 Stiff equations

Stiff differential equations are equations that involve more than one scale and where the scales
are of very different orders.

Example: pp chain in hydrogen burning

dnH

dt
= −2λpp

(nH)2

2
− λpd nHnD + 2λ33

(n3He)
2

2
,

dnD

dt
= λpp

(nH)2

2
− λpd nHnD,

dn3He

dt
= λpd nHnD − 2λ33

(n3He)
2

2
,

dn4He

dt
= λ33

(n3He)
2

2
.

Here, λpd � λ33 � λpp. To solve this in a simple fashion, one would have to use ridiculously
short time steps that prevent large changes in nD, the most variable element, in each step.

Solutions:

• If interested in fairly long time scales only, one can assume that D and 3He are in
equilibrium (i.e. dnD/dt = dn3He/dt = 0) and reduce the equations to two simpler
non-stiff differential equations.

• If interested in all but the shortest time scales, one can assume that D is in equilibrium,
solve the equation for 3He analytically (assuming that H and 4He do not change much
during a time step) and then use the analytical solution n3He(t) when solving for nH and
n4He.

• Use powerful modern methods that efficiently deal with stiff equations (see Numerical
Recipes).
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5 Boundary value problems

Most problems are boundary value problems where values are given at certain boundaries and
solutions are sought that satisfy these boundary conditions. For example, the four equations
of stellar structure require four boundary conditions, two at the centre and two at the surface;
this is a mixed boundary-value problem.

5.1 Shooting methods

One way to solve problems with mixed boundary conditions (i.e. at a and b) is to guess the
values of the unknown values at each boundary and integrate from both boundaries to some
chosen point. By adjusting these guesses, one can then develop an iterative scheme that after
a few interations makes the integrations from both boundaries match at the chosen matching
point.

5.2 Newton-Raphson schemes

An alternative method is to guess a solution of the problem (with the correct boundary values),
check the errors made in the guess and then correct for this using a Taylor expansion.

Example:

Rewrite the N differential equations as

Ψi(y) = 0, y ≡ (y1, . . . , yN), (1)

where the yi’s are the dependent variables we want to solve for. If y(0) denotes an approximate
solution, and if the residual errors of this approximate solution are given by

b
(0)
i ≡ Ψi(y

(0)), i = 1, . . . , N,

one can obtain an improved solution y(1) = y(0) + δy(0), by Taylor-expanding equation (1) to
obtain a matrix equation

[

∂jΨi(y
(0))

]

δy
(0)
j = −b

(0)
i , i = 1, . . . , N.

This basically requires an efficient way of solving the matrix equation. It provides an efficient
iterative scheme to obtain the desired solution, provided that the initial guess is relatively good.
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