
C1: Astrophysics Major Option
Problem Set 5: Advanced Stellar Astrophysics

(Ph. Podsiadlowski, HT06)

1 The Last Stable Circular Orbit [25 points]

In General Relativity, the equation for the radial coordinate r of a test particle orbiting a
non-rotating black hole of mass M can be written as
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where ṙ = dr/dt and L and E are the angular momentum per unit rest mass and the energy
per unit rest mass of the particle, respectively (the particle is assumed to have non-zero rest
mass). This equation resembles the energy conservation equation in Newtonian dynamics,
EN = 1/2 ṙ2 + Veff(r), except for the additional term −GML2/c2 r3 in the effective potential
Veff that becomes dominant at small radii.

a) Treating the problem like a Newtonian one, sketch the effective potential for a particle
near a black hole as a function of radius, both for a small and a large value of L.
Characterize the possible types of trajectories/orbits in both cases.

b) Show that for each value of L there are two possible circular orbits
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provided that L2 > 12G2M2/c2.

c) Show that the r+ solution has a minimum value of rmin
+ = 6GM/c2 and argue that this

is a stable orbit (i.e. corresponds to a minimum of the effective potential). What does
this imply for the r− solution?

d) Calculate the energy E of a particle at this innermost stable circular orbit and show
that it’s binding energy per unit rest mass EB is

EB = (1 − (8/9)1/2) c2
' 0.06 c2.

e) Discuss briefly what happens as matter orbiting a black hole in an accretion disc ap-
proaches the innermost stable orbit. Compare this case to accretion onto a non-magnetic
neutron star.
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2 Gamma-Ray Bursts [25 points]

A popular model for long-duration gamma-ray bursts (GRBs) is the collapsar model, in which
a massive, relatively rapidly rotating helium (or carbon/oxygen) star collapses to form a com-
pact object (e.g. a black hole) surrounded by a disc of matter at nuclear density. Subsequent
accretion from the disc causes the formation of a relativistic jet that penetrates the remaining
infalling envelope and generates a gamma-ray burst at a large distance away from the star by
internal and/or external shocks.

For this problem consider a collapsing helium star of mass MHe = 10 M� and radius RHe =
5 × 108 m where the inital mass of the central black hole is M0

BH = 2 M�.

a) Show that the specific angular momentum of the infalling material has to be larger
than 2× 1012 m2 s−1, the specific angular momentum at the last stable orbit for a 2 M�

black hole, so that an accretion disc can form. Estimate the characteristic dynamical
timescales both for the inner disc and the collapsing helium star. How do these timescales
determine the observable characteristics of GRBs?

b) Assume that an amount of relativistic energy E = 1044 J is injected by the central engine
of the GRB, driving an expanding relativistic fireball. Estimate the radius at which the
fireball becomes optically thin to MeV gamma rays, i.e. the radius at which the optical
depth to pair creation γ γ ⇀↽ e+ + e− becomes less than 1. [You may assume that the
cross section for pair creation is given by the Thomson cross section σT ' 6.6×10−29 m2

and that the typical photon energy is 1MeV; argue that the optical depth is then given
by τγ ∼ nγ σT R.]

While massive stars are known to be rapidly rotating on the main sequence, they are believed
to be spun down efficiently during their evolution by hydrodynamical and magnetohydrody-
namical effects and develop cores that are not rotating sufficiently fast to be consistent with
the collapsar model. One way of spinning up a helium star is if it is a member of a close
binary where it can be spun up by the tidal interaction with a companion star.

c) Consider a 10 M� helium star in a close orbit with a compact star (most likely a neutron
star or a black hole) with an orbital period Porb. Assume that the spin angular velocity
of the helium star is synchronized with the orbital angular velocity of the binary and
that the helium star is in solid body rotation. Estimate the maximum orbital period for
which the core is sufficiently rapidly rotating that only the innermost 2 M� can collapse
directly, while the rest collapses first into a disc [take the typical radius of the inner
2 M� core as 8 × 107 m). [Answer: ∼ 5 hr]

d) Sketch briefly the evolutionary path that can lead to the formation of such a system.
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3 Mass-Transfer Driving Mechanisms [25 points]

Consider a binary consisting of two stars of mass M1 and M2 with an orbital separation A
and orbital period P .

a) Show that the total angular momentum of the binary can be written as

J = µ A22π

P
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where µ ≡ M1 M2/(M1+M2) is the reduced mass of the system. Show that for conserva-
tive mass transfer (where the total mass and the total angular momentum of the system
remains constant), the orbital separation is a minimum when M1 = M2. Sketch the
evolution of A as a function of time assuming that M1 > M2 initially and that mass is
transferred from star 1 to star 2. How does this behaviour of A affect the mass-transfer
rate, assuming that star 1 attempts to expand at a steady rate?

b) Even in the absence of mass transfer, the orbit of a binary will shrink due to the emission
of gravitational waves, which causes the loss of orbital angular momentum at a rate
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where M = M1 + M2 is the total mass of the binary. Show that this implies that the
orbital period decreases as
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By setting the orbital period decay time (P/Ṗ ) equal to the age of the Galaxy (∼ 1010 yr),
determine the maximum separation and hence maximum orbital period for which a
binary consisting of (i) two low-mass helium white dwarfs with M1 = M2 = 0.3 M�, (ii)
two massive carbon/oxygen white dwarfs with M1 = M2 = 1 M� and (iii) two neutron
stars with M1 = M2 = 1.4 M� are driven into contact by gravitational wave emission
within the age of the Galaxy. Discuss the likely/possible fate of the systems in the three
cases.

c?) Assume that star 1 loses mass in a stellar wind at a wind mass-loss rate Ṁ = 10−10 M� yr−1

and that the wind is magnetically coupled to the spin of star 1 up to a radius 10 R away
from the star (where R is the radius of the star). Assume further that due to the tidal
interaction with the companion star, the spin of star 1 is synchronized with the orbital
period (i.e. Pspin = Porb). Estimate the orbital period decay time (P/Ṗ ) due to this
magnetic braking for a system with M1 = M2 = 1 M� and A = 3R. [Hint: what is the
specific angular momentum lost in the stellar wind?]

3



4 Neutron-Star Spin-Up by Wind Accretion [25 points]

Consider a massive X-ray binary consisting of a 20 M� star and a 1.4 M� neutron star in
a relatively wide orbit where the radius of the massive star is much smaller than its Roche
lobe radius. Assume that the massive star loses mass in a steady spherical wind with a wind
mass-loss rate Ṁwind = 10−7 M� yr−1 and a wind velocity vwind = 103 kms−1 and that the
neutron star has a magnetic field B = 108 T (assumed to be dipolar) and is spun up (or spun
down!) by accretion of some of the wind material.

a) Explain the meaning of Alfvén radius (rAlf) and Bondi-Hoyle radius (rBH). Calculate
rBH for the above system and show that the fraction of the wind that is accreted by the
neutron star is given by (rBH/2A)2 where A is the orbital separation of the binary.

The matter that is accreted by Bondi-Hoyle accretion typically has a specific angular mo-
mentum that is 1/4 of the specific Keplerian angular momentum at the Bondi-Hoyle radius.

b) Estimate the characteristic size of a disc that would form around the neutron star in the
absence of a magnetic field.

c?) Now considering the actual magnetic field of the pulsar, estimate the maximum orbital
separation A for which a disc can form around the pulsar (i.e. for which the accreted
specific angular momentum is larger than the Keplerian specific angular momentum at
the Alfvén radius). Determine the equilibrium spin period of the pulsar for this case.
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