
Accretion in Astrophysics:
Theory and Applications

Problem Set I
(Ph. Podsiadlowski, SS10)

1 Luminosity of a Shakura-Sunyaev (SS) Disk

In lecture we derived the following expression for the effective temperature, Teff as a function
of radial distance from the central compact star:

Teff =

[

3GMṀ

8πσr3

]1/4
(

1 −

√

r0/r
)1/4

where σ is the Stefan-Boltzmann constant.

a.) Integrate the total power radiated from the disk (including both sides) and show that it
equals

L =
1

2

GMṀ

r0

where r0 is the radius of the inner edge of the accretion disk.

b.) Define the power radiated in an SS disk for all radii greater than r to be L(> r). Find
an analytic expression for the ratio:

ratio =
L(> r)

1

2

GMṀ

r

Sketch the ratio as a function of r. This result demonstrates that the gravitational
potential energy, released as the matter migrates inward, does not emerge from the disk
locally, but rather is redistributed by the viscous stresses.

2 Temperature of an SS-Accretion Disk

a.) Use the above expression for Teff of an SS-disk to find the location (i.e., the radial
distance from the central star) where the temperature is a maximum. Express your
answer in terms of r0, the radius of the inner edge of the disk. If the central star is
a non-rotating black hole, then r0 = 6Rg. In this case, express your answer for the
location of the maximum temperature in terms of Rg.
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b.) Compute Tmax for the following types of accreting sources:

accretor mass Ṁ r0 source type
white dwarf 1 M⊙ 1017 gm/sec 9 × 108 cm “CV”
neutron star 1.4 M⊙ 1018 gm/sec 1.2 × 106 cm “LMXB”
black hole 106 M⊙ 1024 gm/sec 9 × 1011 cm “AGN”
black hole 109 M⊙ 1027 gm/sec 9 × 1014 cm “AGN”

3 Mass Stored in an Accretion Disk

In lecture we derived expressions for the midplane pressure, temperature, and density of an
SS-disk, as well as for the thickness, H , all as functions of the radial distance r. In the
handout, the dependence of these quantities on α and Ṁ were specified, but the leading
dimensioned quantities were not given. These are provided below for the case of an accreting
central neutron star with a mass of 1.4 M⊙.

Use these results to compute the amount of mass stored in the accretion disk at a particular
instant in time. Formally, you will find that this mass is infinite; however, if you restrict
yourself to plausible integration limits for r, e.g., r0 < r < 104 r0, you will find a sensible
answer.

P ≃ 2 × 105α−9/10Ṁ
17/20
16 r

−21/8
10 f 17/20 dynes cm−2

H ≃ 1 × 108α−1/10Ṁ
3/20
16 r

9/8
10 f 3/20 cm

T ≃ 2 × 104α−1/5Ṁ
3/10
16 r

−3/4
10 f 3/10 K

ρ ≃ 7 × 10−8α−7/10Ṁ
11/20
16 r

−15/8
10 f 11/20 g cm−3

where Ṁ16 is the mass accretion rate in units of 1016 gm sec−1, and r10 is the radial distance

in units of 1010 cm. The function f is defined to be f = (1 −

√

rc/r)
1/4.

To make the integration easier, but with no significant loss of accuracy, you can safely set
f = 1 in the above expressions. Take the inner edge of the accretion disk to be located at
r0 = 107 cm, and the accretion rate to be Ṁ = 1018 grams sec−1. A plausible value to use for
the α parameter is 0.1.

Given the amount of mass stored in such a disk and the accretion rate, estimate a timescale
for “filling” the disk if it were initially empty.
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4 Radial Velocity in an SS Accretion Disk

Use the expressions for ρ(r) and H(r) given in the previous problem to compute an expression
for vr, the radial in-spiral speed of the disk material. Show that for all choices of parameters
α and Ṁ , the radial speed vr ≪ vkepler, as long as one considers radial distances significantly
greater than r0.

5 Spectrum of an SS Accretion Disk

Write out an integral expression for Lν of an SS accretion disk, where Lν is the spectral
luminosity (units of power per unit frequency interval). Treat each annulus in the disk as a
black body of temperature Teff(r) as defined in problem 2 above. Do not try to integrate the
expression since it can’t be done analytically.

For reference, the Planck function is:

P (ν) =
2πhν3c−2

[e(hν/kT ) − 1]

Optional

If you make the following approximations, the spectrum (i.e., Lν) can be obtained analytically:
• Approximate the Planck function by

P (ν) = 2πhν3c−2e−hν/kT

• Take the factor
(

1 −

√

r0/r
)1/4

in the expression for T (r) to be approximately unity.
• Carry out the integration from r = 0 to r = ∞, even though a real disk obviously has limits
at both ends.

Show that
Lν ∝ ν1/3
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6 The Last Stable Circular Orbit

In General Relativity, the equation for the radial coordinate r of a test particle orbiting a
non-rotating black hole of mass M can be written as

1

2
ṙ2 +

1

2

(

1 −
2GM

c2r

)

(

L2

r2
+ c2

)

=
1

2

E2

c2
, (1)

where ṙ = dr/dt and L and E are the angular momentum per unit rest mass and the energy
per unit rest mass of the particle, respectively (the particle is assumed to have non-zero rest
mass). This equation resembles the energy conservation equation in Newtonian dynamics,
EN = 1/2 ṙ2 + Veff(r), except for the additional term −GML2/c2 r3 in the effective potential
Veff that becomes dominant at small radii.

a) Treating the problem like a Newtonian one, sketch the effective potential for a particle
near a black hole as a function of radius, both for a small and a large value of L.
Characterize the possible types of trajectories/orbits in both cases.

b) Show that for each value of L there are two possible circular orbits

r± =
L2 ± [L4 − 12G2M2L2/c2]

1/2

2GM
, (2)

provided that L2 > 12G2M2/c2.

c) Show that the r+ solution has a minimum value of rmin
+ = 6GM/c2 and argue that this

is a stable orbit (i.e. corresponds to a minimum of the effective potential). What does
this imply for the r− solution?

d) Calculate the energy E of a particle at this innermost stable circular orbit and show
that it’s binding energy per unit rest mass EB is

EB = (1 − (8/9)1/2) c2
≃ 0.06 c2.

e) Discuss briefly what happens as matter orbiting a black hole in an accretion disc ap-
proaches the innermost stable orbit. Compare this case to accretion onto a non-magnetic
neutron star.
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