The Progenitor of SN 1987A

Philipp Podsiadlowski (Oxford) Natasha Ivanova (CITA), Thomas Morris (Oxford/MPA)

SN 1987A: an anomalous supernova

- progenitor (SK $-69^{\circ}202$): blue supergiant with recent red-supergiant phase (10^4 yr)
- chemical anomalies:
 - $\label{eq:helium-rich} \triangleright \begin{array}{l} \mbox{helium-rich} \ (He/H \sim \ 0.25, \\ N/C \sim 5, \ N/O \sim 1) \end{array}$
 - CNO-processed material, helium dredge-up
 - \triangleright barium anomaly (5 10 solar)
- the triple-ring nebula
 - \rightarrow axi-symmetric, but highly non-spherical
 - \rightarrow signature of rapid rotation

Early Progenitor Models

Single Models

- low-metallicity models (Arnett, Hillebrandt, Truran)
- extreme-mass-loss models (Maeder, Wood)
- restricted-convection model (Woosley, Langer)
- helium-enrichment model (Saio)
- rapid-rotation models (Weiss, Langer)

General problems

- properties of stars in the LMC (red supergiants!)
- extreme fine-tuning to get blue-red-blue evolution
- physical justification of helium dredge-up
- triple-ring nebula

Binary Models

- companion models (Fabian, Joss)
- accretion models (Podsiadlowski, Barkat, Vanbeveren, Rathansree, Braun)

The Triple-Ring Nebula

- discovered with NTT (Wampler et al. 1990)
- HST image (Burrows et al. 1995)
- not a limb-brightened hourglass, but physically distinct rings
- axi-symmetric, but highly non-spherical
 - \rightarrow signature of rapid rotation?
 - b not possible in simple single-star models (angular-momentum conservation!)
 - > supernova is at the centre, but outer rings are slightly displaced
 - \triangleright dynamical age: $\sim 20,000\,{\rm yr}$

all anomalies linked to a single event a few 10^4 yr ago, most likely the merger of two massive stars

Merger Models

- first merger suggestion: to explain inferred asymmetric envelope expansion (Chevalier & Soker 1989)
- to explain red-blue transition and chemical anomalies by helium dredge-up (Hillebrandt & Meyer 1989; Podsiadlowski, Joss & Rappaport 1990; Podsiadlowski 1992; Chen & Colgate 1995; also Saio, Kato & Nomoto 1988)
 - b motivated by ill-fated sub-ms pulsar with planet-mass companion
- to explain triple-ring nebula (Podsiadlowski et al. 1991; Soker 1999)

Note: $\sim 10\%$ of <u>all</u> massive stars are expected to merge with a companion star during their evolution.

Other candidates: FK Comae, V Hyd, B[e] supergiants [R4], Sher 25, HD168625, η Car, V838 Mon.

THE MODEL (Podsiadlowski 1992)

- abundances from Russell and Bessell (1989); Russell and Dopita (1990): Z = 0.01 (but C abundance?)
- updated opacities (Rogers and Iglesias 1992; Alexander 1994), small amount of convective overshooting
- typical binary: $M_1 \sim 20 M_{\odot}$, $M_2 \sim 5 M_{\odot}$, $P_{orb} \sim 10 \text{ yr}$
- dynamical mass transfer and merging after helium core burning (second dredge-up, s-processing)

rotationally forced disk-like outflow

 blue supergiant phase: swept-up structures

(Podsiadlowski et al. 1991; Lloyd et al. 1995)

Simulations of Slow Mergers (Ivanova, Podsiadlowski, Spruit)

- simulate the spiral-in of a $5 \ M_{\odot}$ star in the envelope of a red supergiant $(\sim 20 \ M_{\odot})$
- rapid initial spiral-in until envelope envelope has expanded sufficiently
- slow self-regulated phase: frictional energy radiated away at the surface (Meyer & Meyer-Hofmeister 1979)
- spiral-in phase ends when the embedded secondary fills its Roche lobe inside the supergiant envelope $(a \sim 10 R_{\odot})$

The Merger Phase

- mass transfer in opaque (low-density) envelope, driven by friction with envelope
- \bullet timescale for destruction of secondary: $\sim 100\,yr$
- stream impacts with helium core \rightarrow core penetration (~ 10^{10} cm) \rightarrow dredge-up of helium
- temperature in mixing region: 10^8 K (s-processing possible)
- merger ends with dynamical disruption of secondary core (flat-entropy core)

Modelling:

- stream-core impact with PROMETHEUS code
- nucleosynthesis in mixing region (similar to TŻO code of R. Cannon)

Formation of the Triple-Ring Nebula (Morris and Podsiadlowski 2007)

- 3-dim SPH simulations (GADGET; Springel)
- simulate mass ejection during merger and subsequent blue-supergiant phase
- angular momentum of orbit \rightarrow spin-up of envelope
- \rightarrow flattened, disk-like envelope
 - energy deposition in rapid spiral-in phase ($\leq 1/3E_{\rm bind}$)
- $\rightarrow \ \ \, {\bf partial \ envelope \ ejection} \rightarrow \ \, outer \\ rings, \ \, bipolar \ \, lobes$
 - equatorial mass shedding during red-blue transition \rightarrow inner ring

The Present Status

- the merger model provides a physical model for all the major properties and does not require any ad hoc assumptions
 - b the blue supergiant, timing of the red-blue transition:
 - b the chemical anomalies: He overabundance, CNO elements
 - b the triple-ring nebula: generic outcome of the merger event
- it does not (yet) explain
 - b the barium anomaly: not compatible with CNO elements (3-d effects?)
 - other structures observed in the nebula: e.g. Napoleon's hat
 - \triangleright model did not include red-supergiant wind, premerger mass-transfer phase (\rightarrow bipolar ejection; Soker)

Prediction: rapidly rotating core after the merger \rightarrow asymmetric, jet-like explosion? Mystery spot? Remnant?

The Main Lesson from SN 1987A

Supernova Diversity

- there is more to supernovae than just two types due to
- binary interactions
 - $\triangleright \text{ affect envelope masses/structure (II-P \rightarrow II-L \\ IIb \rightarrow Ib \rightarrow Ic, \text{ SN 87A})}$
 - core evolution, explosion types (iron core collapse, electron capture, collapsar, prompt/fallback black-hole formation)
- metallicity effects (pair instability?)
- rotation effects
- different circum-supernova media (radio supernovae, IIn)

