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ABSTRACT

We study how well the complex gas velocity fields induced by massive spiral arms are modelled
by the hydrodynamical simulations that we used recently to constrain the dark matter fraction
in nearby spiral galaxies. More specifically, we explore the dependence of the positions and
amplitudes of features in the gas flow on the temperature of the interstellar medium (assumed
to behave as a one-component isothermal fluid), the non-axisymmetric disc contribution to the
galactic potential, the pattern speed €2, and finally the numerical resolution of the simulation.
We argue that, after constraining the pattern speed reasonably well by matching the simulations
to the observed spiral arm morphology, the amplitude of the non-axisymmetric perturbation
(the disc fraction) is left as the primary parameter determining the gas dynamics. However,
owing to the sensitivity of the positions of the shocks to modelling parameters, one has to
be cautious when quantitatively comparing the simulations to observations. In particular, we
show that a global least-squares analysis is not the optimal method for distinguishing different
models, as it tends to slightly favour low disc fraction models. Nevertheless, we conclude that,
given observational data of reasonably high spatial resolution and an accurate shock-resolving
hydro-code, this method tightly constrains the dark matter content within spiral galaxies. We
further argue that, even if the perturbations induced by spiral arms are weaker than those of
strong bars, they are better suited for this kind of analysis because the spiral arms extend to
larger radii where effects like inflows due to numerical viscosity and morphological dependence
on gas sound speed are less of a concern than they are in the centres of discs.

Key words: hydrodynamics — methods: numerical — galaxies: individual: NGC 4254 — galaxies:
kinematics and dynamics — galaxies: spiral — galaxies: structure.

1 INTRODUCTION

Because gas responds strongly to non-axisymmetries in a gravi-
tational field, it was recognized more than two decades ago as a
sensitive tracer of galactic potentials. Therefore, a model for such
a potential can be tested by simulating the gas flow within it, and
comparing the resulting morphology and kinematics to observa-
tions. The earliest efforts to apply such a method used general forms
for the potential derived either from N-body simulations (Huntley
1978) or from analytic considerations (Sanders & Tubbs 1980). The
parameters of these model potentials were then constrained by com-
paring results from hydrodynamical simulations performed with the
beam scheme (Sanders & Prendergast 1974) to the morphology and
kinematics of NGC 5383. The aim was to understand how the gen-
eral features of the gas in a typical SBb(s) galaxy arose. Since NGC
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5383 was being used as a representative of SBb(s) galaxies, Duval &
Athanassoula (1983) recognized the importance of doing a careful
observational study of it and hence obtained more complete spec-
tral and photometric data for it. However, using better data did not
resolve the discrepancies between modelled and observed kinemat-
ics. They blamed it on both an inhomogeneity of the observations
and an inadequacy of the models. Subsequent efforts to constrain
disc galaxy potentials via hydrodynamical simulations have bene-
fited from improvements in hydro-codes and have focused on deriv-
ing galactic potentials from specific galaxies rather than assuming
a general form for them (England 1989; Garcia-Burillo, Combes
& Gerin 1993; Sempere et al. 1995a; Sempere, Combes & Ca-
soli 1995b; Lindblad, Lindblad & Athanassoula 1996; Lindblad &
Kristen 1996; Sempere & Rozas 1997).

Interest in this approach has recently resurfaced with the de-
fined goal of discerning the dark matter content of disc galaxies.
For the case of barred galaxies, where gas motion in the inner re-
gion is strongly non-circular, with velocity gradients of the order
of hundreds of kilometres a second, Weiner, Sellwood & Williams
(2001) argued that model fits to the observed velocity fields could
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unequivocally differentiate between maximal and submaximal
discs. With the same goal in mind, we undertook an investigation
to break the disc—halo degeneracy in any spiral galaxy by studying
the response of gas flow to the weaker perturbations induced by
spiral arms. We began the study with the spiral galaxy NGC 4254
(Kranz et al. 2001, hereafter Paper I) and then applied the method to
a sample of four additional high surface brightness, late-type spiral
galaxies (NGC 3810, 3893, 5676 and 6643) (Kranz et al. 2003). To
summarize, the studies were based upon the assumption that, pro-
vided the dark matter halo is axisymmetric, all non-axisymmetric
features observed in the velocity field of the gaseous disc have
to be generated by the stellar mass component. Therefore, while
completely smooth rotation curves do not betray any information
about the dark and baryonic fractions of galaxies, non-axisymmetric
features in rotation curves might break the baryonic/dark matter
degeneracy.

We expected that when gas in our simulations would cross a spi-
ral feature in the potential there would be a ‘wiggle’ in the velocity
field whose amplitude would be proportional to the local stellar
mass fraction. Ideally, the simulated velocity wiggles would corre-
late well with those measured in the observed gas velocity field if
the gravitational potential used for the simulations was derived from
the observed mass distribution. However, in modelling the gas flow
in different galaxies, we found that we could not account for every
feature observed in the He gas kinematics. The identifications of
kinematical features in the simulations with those in the observa-
tions were often ambiguous. Kinematical features in the simulations
sometimes appeared to be displaced, and/or to have a different pro-
file, or amplitude.

Before considering the addition of more physics to our simula-
tions, such as self-gravity or a multiphase interstellar medium sus-
tained by star formation, supernovae and stellar winds, we propose
in this paper to take a closer look at how the gas flow in a model of
one of our sample galaxies, NGC 4254, changes as a function of our
model parameters. More specifically, we investigate how much of
the mismatch that we see is due to the coarseness of our parameter
space exploration and how sensitive the positions, amplitudes and
profiles of features in the gas flow are to the parameters. In par-
allel, we also search for systematic measurements that can gauge
the accuracy of a model potential. This allows us to estimate the
numerical error associated with our simple hydrodynamical model,
and therefore to assess the robustness of our result for the disc frac-
tion of NGC 4254, namely that it is <85 per cent of its maximal
value, implying that >>1/3 of the total mass within 2.2 K-band disc
scalelengths is dark (Paper I).

Hence, the paper is organized as follows. Section 2 gives a brief
description of the hydrodynamical method we use and it introduces
the parameter space we explore in this paper. It further describes
the initial and boundary conditions of our models, addresses the
question of whether the gas flow in our simulations reaches a quasi-
steady state, and explores the choice of the initial gas density pro-
file and grid resolution. Section 3 proceeds to examine how the
gas flow in the spiral potential depends on the modelling parame-
ters, namely the contribution of the non-axisymmetric component
to the galaxy potential, the gas sound speed and the potential’s pat-
tern speed. Section 4 deals with the mass inflow as a function of
the examined parameters and the hydrodynamical method. Sec-
tion 5 gives our interpretation of the parameter study based on
two different approaches to determine the quality of match be-
tween observations and simulations. Finally Section 6 presents our
conclusions.
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2 HYDRODYNAMICAL MODELLING

Our simulations are carried out using the BGK (Bhatnagar—Gross—
Krook) hydro-code, a code based on gas kinetic theory (Prendergast
& Xu 1993; Slyz & Prendergast 1999). This is a high-resolution,
Eulerian, grid-based hydrodynamics code. At each grid wall, BGK
computes time-dependent hydrodynamical fluxes from velocity mo-
ments of a distribution function that is a local solution to a model
of the collisional Boltzmann equation, namely the BGK equation.
Because the BGK scheme evolves gas flow through an equation that
includes particle collisions, the fundamental mechanism for gener-
ating dissipation in gas flow, the BGK flux expressions carry both
advective and dissipative terms. If the grid is not fine enough to
resolve a shock, then the collision time that is recomputed at each
wall of the grid and with each time-step is enlarged to increase the
viscosity and heat conduction at that particular location. Thereby,
even when the dissipation is put in for numerical reasons, it is added
into the fluxes in exactly the same way that the physical dissipa-
tion is put into the code, and hence there is no source term for
either the physical or artificial dissipation. The code has been ex-
tensively tested on standard 1D and 2D test cases of discontinuous
non-equilibrium flows (see Xu 1998, for a review). It has been used
to solve Navier—Stokes problems in smooth flow regions both with
(Slyz et al. 2002) and without (Xu & Prendergast 1994) gravity, and
it has been tested for its long-term stability and convergence to the
equilibrium solution in a fixed external gravitational field (Slyz &
Prendergast 1999).

One reason for carrying out the disc simulations with this code is
its low diffusivity, a property that is critical not only to capture the
shocks that form when the gas orbits in the non-axisymmetric poten-
tial, but also to model properly the loss of angular momentum and
hence the resulting radial inflow of the gas due to the strong shear in
the underlying differentially rotating disc. Slyz et al. (2002) showed
that, if an isothermal gas is initialized to be in centrifugal equilibrium
within a purely axisymmetric galactic potential, simulation with the
BGK scheme produces the steady-state Navier—Stokes solution to a
high degree of accuracy. The tests were carried out for parameters
that are relevant for galaxy studies: an asymptotically flat rotation
curve with v, =220km s™!, and a sound speed of ¢, = 10km s,
i.e. a highly supersonic (Mach & 20) shear flow throughout most of
the disc. The success of BGK in giving viscous radial flows of the
order of 1 km s~! in a disc rotating differentially at 220 km s~! is a
technical success which ensures that, when studying the kinematics
of the gas in a galactic disc, with a decent grid resolution, one does
not have to worry about artificial dissipation.

The number of grid cells, i.e. the spatial resolution of a simulation,
is one of the parameters whose variation we study in this paper. In
addition to the dissipation introduced by the BGK algorithm, there
is the inevitable dissipation arising from the fact that the code only
saves cell averages at the end of each iteration. Hence the larger the
cells, the less information the code retains. To keep this numerical
dissipation, which is proportional to the cell dimensions, at a con-
stant value throughout the grid, we perform our simulations on an
evenly spaced Cartesian grid. Our runs in Paper I were performed
on a 201 x 201 grid, giving a resolution element of about 115 pc
on a side. For comparison, in this paper we look at runs done at half
(101 x 101) and double that resolution (401 x 401).

There are three other parameters we explore in our modelling.
As already stated in the Introduction and described in Paper I, for
our numerical investigation of the solutions for gas flow in the grav-
itational potential of NGC 4254 we use a potential derived from
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Figure 1. Plot of the angular velocity Q2(R) (thick solid line) of NGC 4254
derived from an axisymmetric fit to its rotation curve. Overplotted are the
angular velocities, £2;,, of the different rigidly rotating reference frames that
we explore (solid horizontal lines), and curves showing € — «/m where m
is 2 (dotted curves) and 4 (dashed curves).

observations. The mass-to-light ratio corrected K-band image pro-
vides us with a stellar density map from which we compute the form
of the non-axisymmetric component of the gravitational potential,
and the rotation curves from observed long-slit He kinematics give
us a measurement of the total gravitational potential of the galaxy.
By assuming an axisymmetric isothermal profile for the dark halo,
we construct a series of potentials of different values for the strength
of the stellar contribution, f (cf. equations 9 and 10, Paper I), which
all match the observed rotation curve. Constraining the parameter
fa 1s our main scientific objective. Note that we do not work with
a self-consistent model. We dynamically follow the gas, neglecting
its self-gravity, in a fixed external potential, which represents the
combined gravitational effect of stars and dark matter.

Another parameter that plays the most important role in shaping
the gas morphology in our simulations is the pattern speed, €2, of
the external potential. We assume the entire potential rotates rigidly
with the same time-independent pattern speed, and we perform the
simulations in this rotating reference frame. We choose the direction
of pattern and gas rotation to be clockwise, so that inside corotation
the gas enters the spiral arms from the concave side. Fig. 1 shows
how the locations of the resonances change with the different €2,
that we use.

We keep away from the difficult question of how the spiral formed,
and we do not look for time-dependent solutions. Instead we study
only steady or quasi-steady flows in the fixed external gravitational
potential of NGC 4254. In the time-independent case, the gas flow
must satisfy:

u-Vu+2Q, xu=-Vp/pxVao, D

V- (pu) =0, (@3]

where @ is the potential of the combined centrifugal and gravita-
tional forces. This system of equations must be completed by an

Table 1. Specifications of the hydrodynamical simulations. Values for the
fiducial run are given in bold face.

Simulation parameters

Grid length (kpc) 23.2
Umax (kms™1) 152
Initial gas mass 3.14 x 10° Mo
Number of grid cells 1012, 2012, 4012

Time to turn on full potential (tpp) 20z, 40¢,, 80t

Time for entire simulation tFp + 2tdyn

Gas sound speed (km s’l) 10, 15, 20, 30

Qp (kms~! kpc™1) 26.8,19.9, 18.3,15.2
R. (kpc) (corotation radius) 5.6,7.58, 8.5, 10

fa disc fraction (per cent) 20, 44, 60, 85, 100

equation of state, and this introduces the last parameter of the prob-
lem: the gas sound speed. Because we do not know the effective
equation of state of interstellar matter, the simplest thing to do is to
assume an isothermal equation of state p = Kp, where K = ¢2/y,
y being the ratio of specific heats of the gas, and ¢ is its con-
stant sound speed. To study how the gas flow responds to changes
in ¢, we simulate the gas with sound speeds of 10, 15, 20 and
30 kms™'.

Since the scaleheight of gas and stars in a typical non-interacting
late-type disc galaxy is about 1/40 to 1/75 the diameter of the visible
galactic disc (e.g. Schwarzkopf & Dettmar 2000), we restrain this
study to two dimensions. More specifically we approximate the disc
as a thin sheet, and only compute the gas flow in the two dimensions
of the disc plane. Alternatively, one can view this approximation as
an integration over the disc thickness perpendicular to the plane,
and our physical variables as mean values in this direction.

Table 1 summarizes the parameters we use for the simulations
and indicates the parameters of our fiducial simulation in bold face.

2.1 Initial conditions

We initialize the gas density profile to be exponential with a scale-
length that is of the order of the observed disc’s stellar scalelength,
namely 3.86 kpc. Upon estimating the total mass of the galaxy from
the observed rotation curves, we set the mass of the gaseous disc to
be 5 per cent of this total mass. The gas is therefore moving in a
potential produced by a mass much greater than itself, which means
that, even in the densest regions (spiral arms), the neglect of its
self-gravity will translate into a modest underestimate of its density
(Berman, Pollard & Hockney 1979).

As for the initial dynamics of the gaseous disc, the simulations
begin with the gas flowing on circular orbits in inviscid centrifugal
equilibrium with respect to the axisymmetric gravitational potential
that best fits the observed rotation curves. The non-axisymmetric
perturbations are then gradually turned on to avoid transient struc-
tures (Sorensen & Matsuda 1982). The criterion for the time in which
the full potential is turned on (zgp) is based on the sound crossing
time across the diagonal of a grid cell (¢,). For the 201 x 201 grid,
we set tpp = 40¢,. Since the sound crossing time depends on the
length of the grid cell, and for the sake of comparison we want fgp
and the total running time of each simulation to be identical, this im-
plies tgp = 20¢, for the 101 x 101 grid, and tgp = 80¢, for the 401 x
401 grid. In terms of the dynamical time of the outer edge of the
disc (tgyn = 27Rgisc/ V. ~ 480 Myr for a rotational velocity of about
152 km s~! at Rgic = 11.6 kpc), for the case where the sound speed
is 10 km s~! and the grid is 201 x 201, this means that we turn on
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Figure 2. The axisymmetric potential subtracted from the potential of NGC 4254. Contours are shown on the left with the force vectors, computed from the
difference in the two potentials, overplotted. A filled contour plot is shown on the right, with the peaks of the potential given in white and the valleys in black.

the full potential in 1.3#4,,. After the full potential is turned on, we
continue to run the simulations for another two dynamical times.
Fig. 2 shows the non-axisymmetric component of the gravitational
potential of NGC 4254 displayed on the 201 x 201 grid.

2.2 Boundary conditions

Since we perform our computations on a Cartesian grid, the centre
of the disc (»r = 0) is not a singular point, and therefore does not
require special treatment via an inner boundary condition. Instead,
the gas flow is computed through this point exactly as it is computed
throughout the grid.

An outer boundary condition is, however, unavoidable. To tackle
this issue, we keep two ‘rings’ of one cell thick ghost cells outside
of a radius of Rgs.. Beyond these ghost cells we do not follow the
evolution of the gas. Hence we have effectively carved a circular
grid out of the square Cartesian grid. At the end of each simula-
tion time-step, we update the values of the hydrodynamic quantities
(mass, momentum and energy) in the ghost cells by performing a
bilinear interpolation to the cells in the vicinity of the ghost cell. To
be more specific, for each ghost cell in the inner ring, for example,
we compute the coordinates of the intersection of the line extending
radially from the centre of the disc to the ghost cell with the circle
bounding the true flow region of the grid. We then find the four
cells surrounding this intersection (some of which might be other
ghost cells). After fitting a surface to the hydrodynamic quantities
in these four cells, we assign the ghost cell the value the fitted sur-
face has at the intersection. By filling up the ghost cells via constant
radial extrapolation that varies azimuthally around the disc, we are
better able to handle situations in which there is a significant non-
axisymmetry near the outer boundaries. For example, from the map
of the potential of NGC 4254 (Fig. 2), one can see that the poten-
tial is quite non-axisymmetric near the upper boundaries, thereby
requiring an outer boundary condition that can take into account the
possibility that the flow in the outer regions of the disc may also be
non-axisymmetric.

For the sake of completeness, we point out that we apply this
boundary condition procedure directly to the mass densities. For the
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velocities, we take the additional steps of converting the Cartesian
velocity components back to the non-rotating frame, then construct-
ing the radial and tangential components of the velocity from the
Cartesian components, and performing the bilinear interpolation and
radial extrapolation procedure on these components. By perform-
ing the interpolation and extrapolation on the radial and tangential
components in the non-rotating frame, we first set the boundary con-
ditions for quantities that are easier to interpolate and extrapolate:
namely the tangential velocity, which is nearly flat (constant in x and
y), and the radial velocity, which is nearly zero in the disc’s outer
regions in the non-rotating frame.

We stress that our boundaries allow gas flow across them. For dif-
ferent runs, mass loss/gain after about 174y, ranges from ~2 per cent
for runs performed in the non-corotating frame or slowly corotating
frames, to at most ~15 per cent for the fastest corotating frame we
simulated, i.e. when corotation is at &5 kpc.

2.3 Steady state?

Before proceeding to an examination of how different physical pa-
rameters change the response of the gas to the underlying gravita-
tional potential, we consider the question of whether our conclusions
depend on the specific snapshot in time for which we analyse the
simulation. For this we look at (Fig. 3) the long-term evolution of our
‘fiducial’ model for NGC 4254. Displayed are the density contours
attimes 1, 2 and 3 Gyr. In terms of dynamical time, this corresponds
t0 2.1¢4yn, 4.2t 4yn and 6.414y,,. We see that the density field adjusts to
the force input within a couple of dynamical times. Therefore, our
simulations are even applicable to spiral arms which are not long-
lived features, i.e. with t & t4y,. To illustrate the steadiness of the
features in time, we present a grey-scale plot (lower right-hand cor-
ner of Fig. 3) of the density as a function of both time and azimuth
along a circle of ~3.8 kpc radius (indicated by a thick solid line in
the contour plot at 3 Gyr). The solid vertical line in the grey-scale
plot indicates the time at which the full potential is turned on in the
simulation, i.e. tgp & 1.3t4y, ~ 0.62 Gyr. Shortly after this moment
(about 0.5 Gyr later), the morphology of the density distribution
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Figure 3. Contour maps showing three time-steps separated by 1 Gyr of the simulated gas density for our fiducial run in order to demonstrate that the gas
flow reaches a steady state. The shaded plot in the lower right-hand corner shows the density as a function of the azimuth along a circle of radius R = 3.8 kpc
(indicated by a thick solid line on the contour plot at 3 Gyr) as a function of time. The solid vertical line in this plot indicates the time, ¢gp, at which the full
potential is turned on in the simulation. After tgp + f4yn (*1.1 Gyr) the simulation yields a very stable pattern.

becomes nearly time-independent. The contour plots show that even
the orientation of the very inner region, which we are not trying to
model in detail since it may have a different pattern speed from the
outer spiral pattern, seems to be steady in time. What is true for the
densities applies also to the velocities. They also reach a near-steady
state (cf. fig. 6.3 of Kranz 2002).

2.4 Influence of initial density profile

To confirm that a specific choice of initial gas density profile does
not introduce a bias in our study, we perform simulations with initial
density profiles of double (7.72 kpc) and half (1.93 kpc) our fiducial
initial scalelength of 3.86 kpc, as well as with an initial density pro-
file that has a ‘hole’ in the central region [po(1 + r/r.)exp(—r/rs),
where r. = 4.46 kpc and ry = 7.72 kpc]. Fig. 4 and the top panel of
Fig. 5 reveal that, while the density contrast depends on the initial
density profile, the morphology of the final gas distribution is al-
most unaffected. The bottom panel of Fig. 5 further shows that the
density-averaged radial velocity is also very nearly independent of
the initial density profile, except in a small region centred around

the corotation radius (in this case R, = 7.58 kpc). Note however that
even in this region differences between models are slight.

2.5 Resolution

Results from any numerical study are also subject to the choice of
grid resolution. Paper I was based on simulations performed with an
evenly spaced grid of 201 cells in x and in y of length ~115 pc per
cell. Such a resolution quite closely matched the observed kinemat-
ics obtained from the long-slit spectra. Here, we run experiments
using a grid with half and double this number of cells. We find that
results have fairly well converged for the 201 x 201 grid. A plot of
the density over the entire x—y plane (Fig. 6), for the sequence of
increasing grid resolutions, shows that the simulation performed on
the 101 x 101 grid is missing many of the features present in the
simulations on the 201 x 201 and the 401 x 401 grids.

More detailed examination of gas profiles in plots of the radial
density profile for ¥ = 202.5° (see Fig. 9) and of the azimuthal
density profile for r & 3 kpc (see Fig. 7) reveals that the amplitudes
of the density maxima for the 201 x 201 grid have nearly converged
to their values on the 401 x 401 grid. There are however notable
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Figure 4. Grey-scale maps of the log of the density from simulations with
our fiducial parameters and with different initial gas density profiles. The
entire simulated region is shown in the left column and the inner 2.6 kpc?
region is shown in the right column.

differences between the profiles on the different resolution grids.
First, the phases of the density maxima are fairly well matched
for the strong density maxima but less so for the lower density
contrast ones. For example, as shown near R &~ 6 kpc on Fig. 9,
higher-resolution simulations tend to shift small density maxima to
larger radii. Secondly, as can be seen on Figs 7 and 9, the shape
of the density and velocity profiles changes with resolution. The
lowest-resolution grid yields the smoothest and most symmetrical
gas profiles. However, with a grid resolution of 201 x 201 one
already recognizes the characteristic profiles described analytically
by Roberts (1969). The profiles are asymmetric with a rapid density
rise followed by a gradual decline (Fig. 7).

Interestingly, even though the numerical viscosity increases with
lower grid resolution, implying higher numerical gas inflow into the
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Figure 5. Natural logarithm of the average density (top panel) and density-
averaged radial velocity (bottom panel) at time ¢ = tgp + 2fqyn ~ 1.6 Gyr
for runs differing only in their initial density profile. The other parameters
in the simulation are the fiducial ones.

centre, we find that the density at r = 0 for the 101 x 101 grid
(see Fig. 9) is actually lower than the central densities of the higher-
resolution simulations. We will discuss this result in more detail in
Section 4, but conclude here that the numerical errors associated
with a 201 x 201 grid represent an ~10 per cent contribution to the
shape, amplitude and position of the features of our discs.

3 PARAMETER STUDY

Following these considerations about resolution, initial conditions
and the attainment of a quasi-steady state in the simulation, we focus
on how the nature of gas flow in the potential is effected by changes
in the three parameters enumerated in Section 2: the amplitude of
the disc contribution to the potential f;, the gas temperature c, and
the pattern speed €2,. We explore only variations in each of these
three parameters individually, keeping the other ones fixed at their
fiducial values (given in bold face in Table 1).
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Figure 6. Contour maps of the density from simulations with ¢g =
10 km s~ !, 60 per cent disc fraction, R, = 7.58 kpc, and with increas-
ing grid resolution. The full potential is turned on in 20z, (20 cell sound
crossing times) for the 101 x 101 grid, 40z for the 201 x 201 grid, and 80z,
for the 401 x 401 grid. The result is shown after 1590 Myr (~3.3t4y,) have
elapsed.

3.1 Different disc fractions

At first we examine how increasing the non-axisymmetric stellar
mass component of a gravitational potential influences the simulated
gas density distribution and the velocity field. The total potential,
d,, was assembled in the following way:

thOI(R | fd) = fdcbstc]lar(R) + q)halo(R | fd)v (3)

adopting the values 0.2, 0.45, 0.6, 0.85 and 1 for f;. Here @y
is the stellar potential with the maximal stellar mass-to-light ratio

and ®y,, is the potential of the dark halo that is constrained by the
observed rotation curve. For a fair comparison, all the simulations in
this series of increasing disc fraction were run for the same amount
of total time, namely ~1.6 Gyr.

A logarithmic plot (Fig. 8) of the gas density for the sequence of
simulations shows that the density contrast of the non-axisymmetric
features in the gas increases as the disc fraction increases. This cor-
roborates Fig. 21 in this paper and fig. 8 of Paper I, which quantified
this trend by taking the average of the amplitude of the velocity
deviations from axisymmetry, and found that this average increases
more or less linearly with the disc fraction. In addition to the change
in the density contrast, Fig. 8 shows that features become more ‘an-
gular’ with increasing disc fraction. For example, in the lowest disc
fraction case (20 per cent disc), the spiral arms appear to be rounded
and smooth in their curvature. As the disc fraction is increased to
85 per cent, the lower spiral arm develops a squareness, which is
even more pronounced for the 100 per cent disc fraction case.

To display these changes in amplitude and morphology in more
detail, Fig. 9 plots the density profile along an azimuthal cut through
the disc at a position angle! ¢ = 202.5°. The top panel of this figure
shows that the smaller-amplitude density peak (lower spiral arm)
located at R ~ 6 kpc moves outwards with increasing disc fraction,
suffering larger shifts in position with changing disc fraction than
the larger-amplitude peaks at smaller radii (R < 2 kpc). To quantify
this further, we plot the gas density and velocity amplitude as a
function of azimuth for R ~ 3 kpc (Fig. 10). In agreement with
analytic calculations in Woodward (1975) (his fig. 7), we find that
the location of the density peak moves towards larger azimuths with
increasing perturbation strength. Fig. 9 also indicates that, as the disc
fraction increases, regions of increasingly lower gas density appear
immediately adjacent to the gas density peaks in the arms. Hence to
differentiate between models with different fy, a code has to perform
well in the low-density regions, which is one of the strengths of grid
codes over particle codes in general and of the BGK scheme in
particular.

Morphological changes with increasing disc fraction are not lim-
ited to spiral arms: they are also present in the inner region of the
galaxy. Even at the resolution of our study, the grey-scale maps of
the inner regions of the disc (right column of Fig. 8) reveal the de-
velopment of off-axis shocks, the emergence of an oval ring around
the inner region, and the strengthening of the 4/1 shock at the end-
points of this oval ring.

Since we are ultimately comparing the kinematical information in
the simulations to observations in order to constrain the dark matter
fraction of the galaxy, we plot in Fig. 11 the difference between
velocity amplitudes (/v? + vf) measured in each model and those
measured in our fiducial run (fy = 60 per cent) along four position
angles (¢ = 135°, 180°, 225°, 270°). As already seen in Figs 8 and
9 here as well as in fig. 7 of Paper I, there are significant variations
in the models depending on the assumed value for f3. The additional
information contained in Fig. 11 is that changing fy has a greater
impact on the central region of the disc where the differences in
velocities between different models can reach 70 km s~'. However,
there are also large velocity variations (10—40 km s~') throughout
the rest of the disc.

Another feature that reacts to the changing disc fraction is the
shock touching the boundary in the upper right-hand quadrant. It
becomes more inclined towards the centre of the disc and increases
in length with increasing f;, raising the concern that it might interact

U Fig. 1 of Paper I displays the orientation of the cuts along all discussed
position angles.
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with other features in the disc. It is hard to discount this shock as
artificial because Fig. 2 indicates that there is a minimum in the
potential in the upper quadrants of the grid. However, it is likely that
whatever structure forms in that area of the grid may be affected by
the outer boundary conditions.

3.2 Different sound speeds

Because it is thought that the interstellar cloud medium can be
crudely approximated by an isothermal gas if the clouds have an
equilibrium mass spectrum (Cowie 1980) maintained by supernovae
that both destroy and create gas clouds, most simulations of gas flows
in disc galaxies treat the gas as isothermal where the sound speed
represents the rms velocity of the interstellar clouds. Simulations
treating the gas as multiphase are starting to be run (Colina & Wada
2000; Wada & Koda 2001; Slyz et al., in preparation). Given the
caveats in modelling a multiphase interstellar medium (ISM), we
find it prudent to keep the simple assumption of a uniform ISM
for these global disc simulations, since, as already remarked in the
Introduction, for our study in Paper I we are trying to match veloc-
ity wiggles in the observations to those in simulations in as much
detail as possible. As a matter of fact it is virtually impossible to
model star formation and feedback processes in our simulations in
such a way as to match the velocity wiggles in the velocity spectra.
In other words, our working hypothesis is that these wiggles arise
from variations in the gravitational potential and therefore that an
isothermal equation of state is a good description of the ISM. We
are then left with examining the effect on our results of different
assumptions for the uniform sound speed of the gas.

Typically authors assert that their hydrodynamical calculations
are insensitive to reasonable changes in the sound speed (Lindblad
et al. 1996; Lindblad & Kristen 1996; Weiner et al. 2001). Given
that flow velocities of the gas relative to the bar and/or spiral pattern
greatly exceed the velocity dispersion of the ISM throughout almost
the entire disc of a galaxy, it indeed seems reasonable to think that
there should be no strong dependence of the flow on the sound speed.
Atlarger values of the sound speed (25 km s~!), however, detailed
investigations of gas flows in strongly barred galaxies (Englmaier &
Gerhard 1997, Patsis & Athanassoula 2000) show that the structure
of the flow changes markedly.
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The first effect of increasing the sound speed that one expects
to find is that the gas should respond less strongly to the forcing
pattern, since at higher sound speeds the pressure of the gas starts
to become more important. This effect is evident in Fig. 12, where
in a sequence of simulations differing only in their sound speed we
see the non-axisymmetric features in the gas gradually fade with
increasing sound speed. By ¢, = 30 km s~! the spiral structure does
not extend as far as it does in the colder gas runs, even though traces
of some of the larger spiral features are still present. We emphasize
that sound speeds of 25 or 30 km s~! throughout the entire disc are
unrealistically high. Results from simulations at these high values
are merely included to illustrate trends of increasing sound speeds.

A close-up view (right-hand column of Fig. 12) of the interior
region of the simulation shows even more striking morphological
differences between simulations at different sound speeds. First, we
notice that the prominent spiral arm on the right side of the galaxy
winds up more tightly with increasing sound speed. Secondly, we
see that the spiral arms reach further and further into the centre of
the disc until by ¢ =30 km s~! they are completely connected to the
centremost region. The last principal morphological change we see
is that the 4/1 shocks fade with increasing sound speed until they
vanish by 25 km s~!. Although the gravitational potential we are
working with is different from the one used by Englmaier & Gerhard
(1997) and Patsis & Athanassoula (2000), some of these changes
that we see, namely the disappearance of the off-axis shocks and
the fading of the 4/1 shocks, are similar to those they describe.

For amore detailed view of the influence of changing sound speed
on the gas flow, we display the density profiles for the different runs
at ¥ = 202.5° (Fig. 9). As expected, the density profile for the
simulation at ¢; = 30 km s~! is everywhere much smoother than
the density profiles for the other simulations. The density maximum
in the middle of the disc (R & 4-5 kpc) is present for all the runs
but it progressively shifts radially inwards with increasing sound
speed, which is a manifestation of the stronger winding of the spiral
structure for larger sound speeds that was already mentioned above.
Features between 2 and 3 kpc that are present for ¢, = 10 km s™!
are essentially gone by ¢, = 25-30 km s~!. Another effect seen
in this figure is that, at » = 0, the simulations with sound speeds
between 10 and 20 km s~! achieve effectively the same density, but
the density for the run with ¢, = 30 km s~' is higher by a factor
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of ~1.09 in log space. In a similar way as in Fig. 10 for the disc
fractions, we plot the gas density and amplitude of the velocity for
changing sound speed in Fig. 13. The density peak is systematically
shifted towards larger azimuths for increasing sound speeds, again
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Figure 9. Cuts along an azimuth of ¢ = 202.5° of the log of the density
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fraction. Middle panel shows results from a simulation on a 201 x 201 grid,
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10 km s~!, and varying grid resolution. Each curve is displayed for the
simulation at time ¢ = tgp + 2tayn (1.6 Gyr).

reflecting a tighter winding of the spiral, with a shift of ~20° between
the smallest (10 km s™!) and largest (30 km s~!) sound speeds we
considered, which is larger than the 15° shift induced by changes in
fa. However, changing the disc fraction from 20 per cent to 100 per
cent results in a difference of 53 M pe™? in density amplitude, as
compared to a difference of 16 M pc~2 for a variation in sound
speed between 10 and 30 km s~!. Thus the simulations are less
sensitive in this respect to a change in ¢, as compared to changes in
Ja-

Fig. 14 shows the difference between velocity amplitudes for runs
with different sound speeds compared to the run with ¢, = 10 km
s~!, for the same four position angles used in Fig. 11. As was the
case for the different f; models, changing the sound speed has the
greatest impact on the centremost region of the galaxy with ve-
locity variations of up to ~40 km s~!. This is worrisome because
it is similar to the variation in this region between the models for
different disc fractions. However, if one excludes the centremost
region of the disc, then the variation in the velocity amplitudes as
one changes the sound speed is much lower than the variations be-
tween the models for different disc fractions (at most ~15 km s~!
as compared to ~40 km s~!). This lower sensitivity to changes in
sound speed in the face of uncertainties in how to model the ISM
suggests that the gas response in the outer regions, as opposed to
the inner regions, of the disc may more reliably trace the gravita-
tional potential. Furthermore, since a sound speed of 10 km s~! for
the interstellar medium is physically motivated, we maintain that,
for the sake of simplicity, it is a good choice for these kinds of
studies.
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3.3 Different pattern speeds

Bar simulations have already shown that the most significant pa-
rameter in controlling the structure of the gas flow in a disc is its
angular pattern speed, 2, (e.g. Hunter et al. 1988). Given this sen-
sitivity of the gas morphology to the pattern speed (see Figs 15
and 16), matching the simulated density to an observation of the
galaxy surface density may be a powerful way to constrain it (see
e.g. Garcia-Burillo et al. 1993; Garcia-Burillo, Sempere & Combes
1994; Sempere et al. 1995a; Mulder & Combes 1996, Paper I).

To elaborate, simulations in a fixed gravitational potential show
that one of the things that the pattern speed and hence the corotation
radius determines is the radial extent of the spiral pattern in the
gas. This is easy to understand because the corotation radius is
the radius at which the pattern speed €2, is equal to the orbital
frequency 2. Hence at the corotation resonance (see Fig. 1) the
gas rotates along with the spiral perturbations and therefore the
non-axisymmetric forcing vanishes. This causes spiral disturbances
to be highly damped at corotation (see Fig. 15 for three cases of
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2;,). Outside corotation the spiral structure may resume. In light
of this, it is expected (Shu, Milione & Roberts 1973) that at the
corotation radius star formation cannot get excited by the density
wave and should not be observed in a quiescent galaxy. Our best
matching simulation for NGC 4254 (see Paper I) is consistent with
this signature for corotation. It gave a corotation radius beyond
which star formation, i.e. the occurrence of H 11 regions, was largely
reduced.

Nevertheless, a major caveat of both this approach for determin-
ing the pattern speed, and of our assumption of a single pattern speed
when we perform simulations to determine the disc fraction of spi-
rals, is that spiral galaxies have a unique pattern speed that is constant
in time. If spiral patterns are transient as indicated by some N-body
simulations (e.g. Sellwood & Carlberg 1984; Sellwood 2000), then
the concept of established resonances is less important, and the
corotation radius might change very rapidly. Since we model the
gas flow in a fixed potential, we cannot explore the time evolution
of the spiral patterns. However, in view of the well-ordered spiral
structure of NGC 4254, and the fact that the simulated gas density



1172 A. D. Slyz, T. Kranz and H.-W. Rix

(od%) A

(od>1) &

(od>) &

(od>) &

(od>1) &

-10 -5 0 5 10 -2 -1 O 1 2

X (kpc) X (kpe)
5 6 7 8 6.5 7.0 7.5 8.0 8.5

log,o(Density) (Mg kpc™)

log,o(Density) (Mg kpc™)

Figure 12. Grey-scale maps of the log of the density from simulations on
a 201 x 201 grid, with 60 per cent disc fraction, R, = 7.58 kpc, and with
increasing sound speed. The entire simulated region is shown in the left
column and the inner 2.6 kpc? region is shown in the right column.

distribution accurately matches the observed galaxy morphology,
the assumption that the spiral pattern is not undergoing a massive
rapid reorganization seems reasonable. We therefore conclude that
a stellar spiral pattern rotating at a unique speed 2, is a sensible
assumption for our simulations.

4 MASS INFLOW

Another way to quantify the influence of the different simulation
parameters is to consider the mass inflow rates. As pointed out by
Athanassoula (1992), a good indicator of the mean inflow rate is the
mass-averaged radial velocity, (v,). Hence we compute it (Fig. 17,
top row; Fig. 18, left column) as a function of radius for different
simulations. We also plot the average densities, (o) (Fig. 17, bottom
row; Fig. 18, right column), so as to illustrate the net effect of the
radial inflow velocity on the gas mass distribution.

Fig. 17 shows that changing the gas sound speed affects the sim-
ulations with a high disc fraction more than the simulations with a
low disc fraction. More specifically, the scatter about the average
radial velocity is A1 km s~! for the 100 per cent disc case as op-
posed to ~0.1 km s~! for the 20 per cent disc case. The figure also
shows that the maximum of (v,) varies from ~—1 km s~! for the
20 per cent disc case to &—2 km s~! for the 100 per cent disc case.
The larger |(v,)| for the higher disc fraction cases can be explained
by the fact that increasing the disc fraction increases the strength of
the spiral shocks. This in turn increases the amount of dissipation
and hence angular momentum loss that the gas suffers as it slams
into the shocks during its rotation about the galactic centre.

Fig. 17 also shows that the shape of the (v,) profile changes with
increasing disc fraction. More specifically, for the 100 per cent disc
simulations the region of the disc where |(v,)| is maximum extends
from the centre to &3.5 kpc. As a consequence of this high inflow up
to large distances, the average scalelength of the density distribution
for the region interior to ~3.5 kpc is much smaller than the initial
gas radial scalelength. In contrast, for the 20 per cent disc fraction
case only the region contained within the inner 2 kpc of the disc
departs in shape from the initial condition.

In addition to sensitivity to disc fraction and sound speed, the
mass inflow rates, as pointed out by Prendergast (1983), are incred-
ibly sensitive to code and grid spacing. To explore this issue, we
measured (v,) and (p) for simulations with different grid resolu-
tions and also for a set of simulations done with a different code.
As a worst-case scenario for a diffusive grid code we took the beam
scheme (Sanders & Prendergast 1974) that was used extensively
in the earliest galactic disc simulations (Huntley 1978; Sanders &
Tubbs 1980; Duval & Athanassoula 1983). Like BGK, the beam
scheme is a gas-kinetic hydro-code, i.e. fluxes are computed by tak-
ing moments of a velocity distribution function, f. Both schemes
choose f arbitrarily at the beginning of each updating time-step,
but the beam scheme evolves it through the collisionless Boltzmann
equation, whereas the BGK scheme solves for the time evolution of
f throughout an updating time-step using the BGK equation, which
is a model of the collisional Boltzmann equation. By assuming in-
stantaneous relaxation of f to a Maxwellian velocity distribution at
the beginning of the updating time-step, the beam scheme endows
the gas with a mean collision time equivalent to the updating time-
step. In the BGK scheme, on the other hand, collisions are active
throughout the updating time-step, and for hydrodynamical appli-
cations the BGK scheme demands that the collision time be much
smaller than the updating time-step. Since dissipation parameters
are proportional to the collision time, , e.g. the dynamical viscos-
ity n = tp, we easily see that an overestimation of the collision time
will lead to a very diffusive scheme. Indeed, Fig. 18 illustrates that
(v,) is about an order of magnitude larger with the beam scheme
than it is with BGK and that the effect is worse in the centre of the
disc, where a plot of (p) shows that simulations with different disc
fractions are indistinguishable. Fig. 18 also shows that, even with
a BGK simulation on a 101 x 101 grid, one still does better than
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Figure 15. Density contours for three simulations differing in their pattern speed. The value for the corotation radius is marked in the upper right-hand corner.
All the simulations are performed for a model with 60 per cent disc fraction, ¢ = 10 km s~ and on a 201 x 201 grid.

beam by about a factor of 5 in the radial inflow velocities in the

inner regions of the disc.

A look at the morphology of the disc for simulations performed
with the beam scheme (Fig. 19) confirms that the inner region of
the disc computed with beam is essentially insensitive to disc frac-

© 2003 RAS, MNRAS 346, 1162-1178

tion. The morphological changes that accompany a change in disc

fraction (Fig. 8) are absent. Interestingly, however, Figs 18 and 19

show that, even with this incredibly diffusive scheme, one can still
distinguish between simulations run with different disc fractions in
the outer regions of the disc where a spiral perturbation is present.
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5 DISCUSSION

In order to quantify what has been described in Sections 3 and 4,
we perform an overall comparison between the observed and simu-
lated kinematics. We use two approaches. First, we perform a global

least-squares analysis (Fig. 20) taking into account the location
and amplitudes of individual wiggles. Secondly, we compute the
average wiggle amplitude (Fig. 21), neglecting information about
the wiggle positions. The comparison was performed on a reduced
data set with the very inner disc region removed. Furthermore, a
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different grid resolutions.

treatment has been applied to the observed kinematics in order to
exclude shocks that are missing from all simulations. These shocks
probably originate from non-gravitational effects (see Kranz 2002,
section 4.3.2.1).

Fig. 20 corresponds to fig. 9 in Paper I (except that it uses the
reduced data set described above) and measures the match in both
wiggle position and amplitude between the observations and sim-
ulations. Our BGK simulations with fiducial values for the grid
resolution, gas sound speed and pattern speed are plotted with as-
terisks. As argued in Paper I, a maximal disc mass fraction can be
ruled out for NGC 4254 on the basis of this plot. Now we can look
at how strongly the locations of the points in Fig. 20 depend on the
chosen parameters for the simulations. Gradually increasing the gas
sound speed (temperature) to an unphysical 30 km s~! (90 000 K)
smoothes out the wiggles in the simulations. As a result, a higher
gas sound speed cancels out any change in the disc mass fraction
(diamonds), so that for ¢, = 30 km s~! the simulated gas velocity
field is almost independent of f;. However, for smaller variations

© 2003 RAS, MNRAS 346, 1162-1178

(£5-10 km s~!) of the gas sound speed relative to our fiducial value
of 10 km s~!, the effect on the least-squares analysis is weak. As for
the effect of the grid resolution, we studied it for the case of f4 =
60 per cent (triangles in Fig. 20). The features resulting from the
simulation on the 100 x 100 grid are smoother with respect to the
fiducial model, thus yielding a slightly worse agreement with the ob-
served kinematics. On the other hand, the high-resolution simulation
(400 x 400 grid) yields an even worse agreement with the observa-
tions. This can be understood by studying Figs 7 and 9, which show
that, even though the amplitude and in many cases the peak positions
of the wiggles on the 201 x 201 grid have nearly converged to their
values on the 401 x 401 grid, the shocks on the higher-resolution
grid have a different profile. They tend to be sharper and to have
higher density and velocity contrast, so that a measurement of the
spatial overlap of the wiggles with observations finds significant
discrepancies between the two models. Furthermore, in comparison
with the (lower-resolution) observed gas kinematics, the wiggles
on the 401 x 401 grid exhibit larger average deviations from the



1176  A. D. Slyz, T. Kranz and H.-W. Rix

1
0 2
5 1
™ =<
£ o oz
N o
-5 -1
—-10 -2
10 5
5 1
’a\ <
o —~
< 0 0o x
> &
-5 -1
—-10 -2
60% dis
10 4 5
5 1
m <
o, —
< 0 0o x
> e
-5 -1
-10 -2
10 5
5 1
< <
o, —
=< 0 0o x
> e
-5 -1
-10 -2
’ 100% dis
10 s
5 1
’a‘ ~
2. —~
< 0 (U
> e
-5 -1
-2

5 6 7 8 6.5 70 75 80 85
log,(Density) (Mg kpc™) logyo(Density) (Mg kpc™)

Figure 19. Grey-scale maps of the log of the density from simulations
with the beam scheme on a 201 x 201 grid, with 60 per cent disc fraction,
R. =7.58kpc, ¢s =10 km s~! and with different disc fractions. The entire
simulated region is shown in the left column and the inner 2.6 kpc? region
is shown in the right column.

data points, resulting in a worse overall x2/N value. Accordingly,
we argue that simulations should be performed on a grid with a
cell size comparable to the spatial resolution of the observational
data to which they will be compared. Alternatively, one can smooth

®
2.5 —
| cs -
%15
20— =
<>20
- | i
U res
< r 25
AOOA . <>
L O
1.5 —
Ccs
B <>50 cs 7
. 30 4
<>25 <>
|- 100 >K ]
@ ‘o .
* ¥
1.0~ =
X
| | | | L
20 40 60 80 100

disk mass fraction f,

Figure 20. The x2 comparison between simulations and observations for
the set of simulations explored in this paper. All points, with the exception of
the filled circles (beam scheme), are from simulations with the BGK scheme.
The asterisks denote simulations performed on a 201 x 201 grid, with
cs = 10 km s~! and R, = 7.58 kpc. Open triangles indicate simulations
at different resolution, and open diamonds indicate XZ results from simula-
tions at different sound speeds.
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Figure 21. Plot of the average deviation of the velocity from axisymme-
try for both the observations (open squares) and the simulations (asterisks,
filled circles, open triangles, open diamonds). The symbols for the simula-
tions have the same meaning as the symbols in Fig. 20. An axisymmetric
model was fitted to the observation, and then this model fit was subtracted
from both the observation and the simulation. Because of differences in
the axisymmetric model fit for the different disc fractions, there is a small
variation in the average wiggle amplitude for the measurements.
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high-resolution simulations to match the spatial resolution of the
observations. Finally, to explore the x2/N values resulting from a
different and more diffusive hydro-code, we plotted results from
the beam scheme (filled circles) for simulations with fiducial values
for the grid resolution, gas sound speed and pattern speed. Fig. 20
shows that the beam scheme seems to work relatively well for most
of the disc regions. It should be noted, however, that the central
region of the disc, where the beam scheme is the least successful,
was excluded from the comparison.

Naively reading Fig. 20, we would conclude that the 45 per cent
disc model is the best match to the observations. However, in light of
Section 3, which illustrated the unlikelihood of simple simulations
exactly matching every wiggle in the observations, we make the
following remarks on the x? analysis. If for a simulation performed
with a given fy there is a large-amplitude wiggle that is slightly
spatially shifted from the wiggle in the observation, it will give a
large deviation in the x? plot. As a result, the simulation may be
discarded as one that gives a poor match to the observation when
in fact it could be that the simulation parameters were reasonable
but not precise enough. For example, the physical sound speed at a
wiggle location could have been very different from the simulation
sound speed, or the pattern speed, which has the greatest influence
on the positions of the wiggles, is not as constant as modelled. On the
contrary, the simulations with smaller wiggles, caused either by low
disc fraction, high sound speed, low resolution, or a very diffusive
scheme, have the advantage that, even if the peaks mismatch, they
are small in the simulation so they do not carry as much weight in
the calculation of the x? deviations. Hence these simulations might
give better 2 matches. This suggests that the x? analysis favours
low f4 models. This conclusion is not completely straightforward
because it is not true that all processes that weaken wiggles improve
the x? fit. For example, increasing the sound speed from 10 to 30
km s~! for the 20 per cent and 60 per cent disc fraction models
worsens the x2. However, the robust trend that emerges from our
analysis is that changing the various modelling parameters for the
higher f; discs causes larger variations in the x? than changing the
same parameters for the lower fy models. In other words, getting
the parameters ‘right’ for the high f; models is more crucial than
getting them ‘right’ for the low f3 models. In that sense, the x2
analysis favours the low f; models. Given all the uncertainties in
the modelling, variations of x? that are smaller than 10 or 20 per
cent should not be taken too seriously. Thus according to Fig. 20,
the range for f; lies between 0.2 and 0.85, but it is very difficult to
distinguish models within this bracket. Unfortunately this range of
values for f; is very large since it allows for submaximal as well as
marginally maximal discs.

On the other hand, Fig. 21 only contains information about wig-
gle amplitudes. These are obtained by subtracting an axisymmetric
velocity field (a slowly varying function of f;, which explains the
different wiggle amplitudes for the measured data points) from both
the simulation velocities and the observational velocities. Fig. 21
corresponds to fig. 8 in Paper I where the latter displays only results
from the fiducial simulations. For a fixed sound speed, the average
wiggle amplitude scales almost linearly with the disc mass fraction.
As mentioned earlier, for a larger disc mass fraction, an increase of
the gas sound speed smears out the wiggles, thus decreasing their
average amplitude. Lowering the grid resolution (100 x 100) has
the same effect, whereas increasing it (400 x 400) hardly makes
any difference. This is consistent with what we see in the x? plot
(Fig. 20): the amplitudes of the wiggles in the 200 x 200 simulation
are almost converged to their values on the 400 x 400 grid (see
also Figs 7 and 9) thereby giving good agreement between the two
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different resolution simulations in Fig. 21. As in Fig. 20, the beam
scheme seems to work as well as the BGK scheme for the outer
disc. Neglecting error bars on the measurements, Fig. 21 favours
a ~70 per cent disc model. However, assuming an error bar of
2 km s~! on the average wiggle amplitude, the permitted range for
fa according to Fig. 21 lies between 0.5 to 0.85. Taking the region of
overlap of our two methods, we find f; between 0.5 and 0.85. Even
though both methods largely overlap in their predicted f; values, we
argued that the x? criterion is not as well suited in excluding low
fa values. Therefore for a sample of galaxies, the second criterion
is slightly better, since the associate errors are random, while the
errors of the x? will always weigh in favour of small £, values.

Following an exploration of the simulation parameter space in
this paper, we understand why these global measurements do not
give extremely accurate measurements of the disc fraction. How-
ever, a robust conclusion of Figs 20 and 21 is that hydrodynamical
simulations rule out a maximal disc model for NGC 4254, in agree-
ment with our conclusions in Paper I, and strongly suggest a value of
the disc fraction in the range 50-85 per cent. Even when we make
the gas in the disc (unreasonably) hot or when we use a very diffu-
sive scheme, the maximal disc solution is never the best match to
the observations. We conclude that the fiducial model used in Paper
1is indeed close to the best, if not the best, estimate and that, consid-
ering the simplified physics used in this analysis, our method puts
surprisingly tight constraints on the amount of dark matter present
in high surface brightness galaxies.

6 CONCLUSIONS

‘We have demonstrated that, despite simplifications in modelling gas
flows, hydrodynamical simulations can still put strong constraints
on the dark matter fraction of spiral galaxies. Our main conclusions
are as follows:

(1) For the purposes of breaking the disc—halo degeneracy, mod-
elling gas flow across massive spiral arms may be preferable to
modelling the flow in the inner regions of strongly barred galax-
ies, because gas flow in the inner region depends more critically on
the assumed sound speed of the ISM (see for example Fig. 14) and
suffers more from numerical viscosity (Fig. 18).

(i1) From the modelling parameters we considered, the pattern
speed is by far the most important parameter for determining the gas
morphology. This makes constraints on the pattern speed through
comparison to the observed spiral morphology convincing.

(iii) A detailed comparison between simulated and observed ve-
locity fields is challenging because of the dependence of the gas flow
on many physical and numerical parameters. Nevertheless, with a
reasonable, physically motivated choice for the gas sound speed, a
grid resolution that is comparable to the resolution of the observa-
tions, and a high-resolution hydro-code such as BGK, one can get
a good estimate of the pattern speed of the gravitational potential.
Then, the baryonic disc fraction remains as the primary parameter
determining the flow. While the technique discussed in this paper
cannot yield an exact number for the dark matter fraction in a spiral
galaxy, it can constrain it, conclusively ruling out certain values for

fa.
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