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ABSTRACT
As a first step to a more complete understanding of the local physical processes which determine
star formation rates (SFRs) in the interstellar medium (ISM), we have performed controlled nu-
merical experiments consisting of hydrodynamical simulations of a kiloparsec-scale, periodic,
highly supersonic and ‘turbulent’ three-dimensional flow. Using simple but physically moti-
vated recipes for identifying star-forming regions, we convert gas into stars which we follow
self-consistently as they impact their surroundings through supernovae and stellar winds. We
investigate how various processes (turbulence, radiative cooling, self-gravity, and supernovae
feedback) structure the ISM, determine its energetics, and consequently affect its SFR. We find
that the one-point statistical measurement captured by the probability density function (PDF)
is sensitive to the simulated physics. The PDF is consistent with a log-normal distribution
for the runs which remove gas for star formation and have radiative cooling, but implement
neither supernovae feedback nor self-gravity. In this case, the dispersion, σ s, of the log-normal
decays with time and scales with

√
ln[1 + (Mrms/2)2] where M rms is the root-mean-squared

Mach number of the simulation volume, s = ln ρ, and ρ is the gas density. With the addition
of self-gravity, the log-normal consistently underpredicts the high-density end of the PDF
which approaches a power law. With supernovae feedback, regardless of whether we consider
self-gravity or not, the PDF becomes markedly bimodal with most of the simulation volume
occupied by low-density gas. Aside from its effect on the density structure of the medium,
including self-gravity and/or supernovae feedback changes the dynamics of the medium by
halting the decay of the kinetic energy. Since we find that the SFR depends most strongly
on the underlying velocity field, the SFR declines in the runs lacking a means to sustain the
kinetic energy, and the subsequent high density contrasts. This strong dependence on the gas
velocity dispersion is in agreement with Silk’s formula for the SFR which also takes the hot
gas porosity, and the average gas density as important parameters. Measuring the porosity of
the hot gas for the runs with supernovae feedback, we compare Silk’s model for the SFR to
our measured SFR and find agreement to better than a factor two.
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general.

1 I N T RO D U C T I O N

The correlation in galaxies between the star formation rate (SFR)
and the average gas surface density over several orders of magni-
tude (Kennicutt 1998) suggests a simple, deterministic prescription
(Schmidt 1959) for star formation. Yet the finding that, at least in
the Milky Way, all star formation occurs in dense, cold clouds of
molecular hydrogen and dust raises the question of how information
about the average gas density of a galaxy reaches the small scale
on which star formation occurs. Furthermore, observations of our
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own interstellar medium (ISM) as well as that of other galaxies re-
veal that far from being well described by a global quantity like the
average gas density, the ISM has a spectacularly complex structure
on many scales. Diffuse ionized gas in edge-on spirals is concen-
trated in webs of filaments and shells (Rand, Kulkarni & Hester
1990; Dettmar 1992; Ferguson, Wyse & Gallagher 1996). Atomic
gas detected by 21-cm emission in our Galaxy (Heiles 1979, 1984)
as well as in several other spirals (Rand & van der Hulst 1993; Irwin
1994; King & Irwin 1997; Lee & Irwin 1997) resides in ‘supershells’
and ‘worms’. In maps of the nearby spirals M31 and M33 (Brinks &
Bajaja 1986; Deul & den Hartog 1990), it is also found to be depleted
in numerous 100 pc–1 kpc ‘holes’. Attempts to quantify this elab-
orate ISM structure are confronted with questions of identification.
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Structures are interconnected, with, for example, denser regions
of gas embedded within filaments. Hence, for example, potential
sites of star formation cannot be picked out, without introducing a
density threshold and thereby a bias to separate them from the un-
derlying density field. An alternative way to analyse the ISM is with
Fourier transform power spectra. Applied to H I emission maps of
the Large and Small Magellanic Clouds, power laws over approxi-
mately two orders of magnitude are found (Stanimirovic et al. 1999;
Elmegreen, Kim & Stavely-Smith 2001), providing another insight
into the structure of the ISM, namely that as other observations have
already suggested, it is likely to be turbulent.

Clues about the energy sources for the stirring of the ISM come
from measurements of the sizes and velocities of shells. In some
cases stellar winds and supernovae are found to be adequate for
creating the supershells, and H I holes. In other cases larger quanti-
ties of energy are demanded and then collisions of external clouds
with the galaxies are invoked (Tenorio-Tagle 1981). As for the dif-
fuse ionized medium, although the energy available from O stars
would be sufficient to account for its photoionization, a well-known
problem is that photons from the O stars cannot travel far from
their origin without being absorbed by the molecular clouds and
H I haloes surrounding them. In that case the photons either reach
larger distances by travelling through photoionized conduits carved
out by earlier supernovae or as suggested by an alternative model
they are additionally generated in turbulent mixing layers at the in-
terfaces between hot and cold gas. These are ubiquitous in the ISM,
and have been invoked as an efficient means to convert the thermal
energy generated by shear flows to ionizing radiation (Begelman
& Fabin 1990; Slavin, Shull & Begelman 1993). Ultimately the
energy source in the latter model is again the supernovae which cre-
ate the hot gas. Recent X-ray images from Chandra map out this
hot, tenuous gas, predicted by Spitzer (1956), above and below the
galactic plane of disc galaxies (Wang et al. 2001). Even without a
heat source, due to its long cooling time, once it is generated by
supernovae, such gas can persist for millions of years. Cox & Smith
(1974) reasoned that given that OB stars occur in associations, it is
likely that a supernova will go off inside the hot cavity generated
by a previous supernova, thereby rejuvenating it and creating an
even larger cavity. In this way, successive supernovae can overlap,
creating a network of tunnels. Expanding at high speed within these
tunnels, the hot gas can move above the galactic plane where it is
either halted by insufficient speed to escape the galactic potential,
or by an encounter with a large mass of cold, high-density gas, or by
efficient mixing with cooler gas which increases its density thereby
accelerating its radiative energy losses.

In light of this complex environment in which star formation oc-
curs, it is even more surprising that the Schmidt law is so successful.
It is in the context of this complexity that we undertake a study of
the star formation rate in a multiphase ISM. We restrict ourselves
to a local study of the ISM, namely that of a ∼1 kpc3 region. The
earliest local study which included supernovae feedback was done
by Rosen & Bregman (1995) in two dimensions. They considered a
segment of a galactic disc, taking into account a fixed external grav-
itational potential, but neglecting rotational effects, self-gravity and
magnetic fields. In a three-dimensional model which included the
effects of an external gravitational potential, rotation, and magnetic
fields, Korpi et al. (1999a,b) studied a supernova-driven galactic dy-
namo. Meanwhile, to investigate the disc–halo interaction, Avillez
(2000) followed the evolution of a segment of a galactic disc with an
adaptive mesh refinement code. Unlike these studies, ours follows
self-consistently and in three dimensions both the gas and the stars,
treating the latter as a system of collisionless particles subject to

gravity. Rosen & Bregman (1995) followed the stellar component
but treated the stars with the same fluid equations used for the gas,
thereby making their flow more viscous than that expected for a
collisionless system of particles. Without star particles tagged with
their ages, Rosen & Bregman (1995) decided upon a supernovae
rate for their simulation, then proceeded to set off supernovae with
a probability of occurrence correlated to the stellar density. Avillez
(2000) approached the issue by constructing an algorithm to dis-
tinguish between isolated and clustered supernovae. For isolated
supernovae events, Avillez (2000) randomly determined the posi-
tions of supernovae in the disc plane with rates based on observed
ones. To mimic clustered supernovae, a percentage of the super-
novae sites were chosen to coincide with locations where there was
a previous supernova. In the Korpi et al. (1999a,b) implementation
there was a density criterion to determine the locations of isolated
supernovae. In both Avillez (2000) and Korpi et al. (1999a,b), su-
pernovae occurring above the disc plane were placed in random
locations with an exponential distribution characterized by a scale-
height also adopted from observations. Given that we are inter-
ested in the impact of supernovae feedback on star formation, we
cannot rely on these methods of modelling the locations of super-
novae. Instead we require that the locations, ages and masses of the
star particles self-consistently determine the supernovae events. A
simple calculation shows that a star with a velocity of 10 km s−1

will travel ∼100 pc (e.g. the average size of a molecular cloud) in
10 Myr. The latter corresponds to a typical time delay between the
birth and death of a star with M ∼ 80 M�. In a follow-up paper
we explore how our results change when we neglect this time delay
and instead allow the stars to explode as supernovae immediately
after their birth (Slyz, Devriendt, Bryan & Silk, in preparation).
Obviously a local model such as ours is of limited relevance for
quantitative comparisons to the ISM in galaxies. As later detailed
in Section 6, the limitations of our idealized boundary conditions
and the absence in our models of an external gravitational potential
as well as of a shear flow arising from rotation means that there are
many fundamental questions that we cannot address. Nevertheless
we believe that for the purposes of studying the non-linear inter-
play between star formation and stellar feedback, our simple model
yields important insights.

The question we address is what physical processes regulate the
rate at which gas turns into stars in a multiphase ISM. In Section 2
we describe the numerical method we use as well as the ingredients
of our simulation. To model the large dynamic range in densities
and temperatures of a gaseous medium compressed by self-gravity
and by shocks maintained by supernovae and stellar winds, a robust
high-resolution hydrodynamical scheme proves essential. To get a
qualitative idea about the phenomena involved, Section 3 presents
the general morphological, thermodynamical, and dynamical fea-
tures of our simulations. A more quantitative analysis of the gas
structure and dynamics is presented in Section 4 where we explore
changes in the gas probability density function and energy spectra
with the addition of more and more physics thought to be relevant
for star formation. Section 5 compares the star formation rates we
measure in our simulations to simple analytic prescriptions and Sec-
tion 6 discusses the limitations of our simulations. Finally our main
conclusions are summarized in Section 7.

2 M E T H O D A N D I N G R E D I E N T S
O F T H E S I M U L AT I O N S

Traditionally the problem with numerical simulations trying to
model star formation and feedback processes is that the radiative
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losses of the hot component generated by supernovae are enormous,
even though in the absence of any interaction of the hot gas with
the cold gas the cooling time of the hot gas is on the order of 100
Myr. In many cases the culprit is numerical diffusion which mixes
cold gas into the hot gas more than it physically should. As a re-
sult, since the density of the cold gas is high, mixing even a small
fraction of it with the low-density hot gas increases the density of
the hot component sufficiently for it to cool more efficiently than it
should. For this reason, high-resolution grid codes are better suited
for studies of the multiphase interstellar medium than more dif-
fusive particle-based methods which require carefully constructed
algorithms to circumvent artificial cooling (e.g. Marri & White
2003).

With this in mind, we model the evolution of gas and stars
in a three-dimensional periodic box which is 1.28 kpc on a side
with a grid-based scheme for the gas and a particle-mesh method
for the stars. More specifically we have incorporated the BGK hy-
drocode (Prendergast & Xu 1993; Slyz & Prendergast 1999) into
Bryan’s ENZO code (Bryan & Norman 1997, 1999) which uses a
Lagrangean particle-mesh (PM) algorithm to follow the collision-
less stars moving in the gravitational potential the gas and the stars
themselves generate. Based on gas-kinetic theory, BGK computes
time-dependent hydrodynamical fluxes from velocity moments of
a distribution function which is a local solution to a model of the
collisional Boltzmann equation, namely the BGK equation (Bhat-
nagar, Gross & Krook 1954). The hydrodynamics code has been
extensively tested on discontinuous non-equilibrium flows (see Xu
1998, for a review) and performs well both at flow discontinuities
and strongly rarefied regions, a criterion which is mandatory for
ISM simulations.

Initially the gas has constant density (ρ gas = 1 atom cm−3) and
temperature (T gas = 105 K) and, similar to the initialization in
MacLow et al. (1998), its velocity field is drawn from a Gaussian
random field characterized by a power spectrum scaling like k−4.
We truncate this velocity power spectrum so that the field only has
power on large scales, i.e. in modes up to k = 4. The initial v rms

is ∼50 km s−1. Contrary to MacLow et al. (1998), we do not add
velocity perturbations at each time-step to drive the ‘turbulence’.
We only impose the velocity perturbations once at the beginning of
the simulation. We assume radiative cooling of an optically thin gas
which is in collisional ionization equilibrium. More specifically, our
cooling function, displayed in Fig. 1, is an extension of the cooling
curve of Sarazin & White (1987) down to temperatures of T min =
310 K to account for H2 cooling using the rates given in Rosen &
Bregman (1995). The extension to lower temperatures assumes a
solar metallicity, a completely ionized gas at 8000 K and an ioniza-
tion fraction that gradually drops to 10−3 below 8000 K. Fitting a
piecewise power law to our cooling curve gives:

�(T )

=




0 if T < 310 K,

(2.2380 × 10−32)T 2 if 310 � T < 2000 K
(1.0012 × 10−30)T 1.5 if 2000 � T < 8000 K
(4.6240 × 10−36)T 2.867 if 8000 � T < 39 811 K
(3.1620 × 10−30)T 1.6 if 39 811 � T < 105 K
(3.1620 × 10−21)T −0.2 if 105 � T < 2.884 × 105 K
(6.3100 × 10−6)T −3 if 2.884 × 105 � T < 4.732 × 105 K
(1.047 × 10−21)T −0.22 if 4.732 × 105 � T < 2.113 × 106 K
(3.981 × 10−4)T −3 if 2.113 × 106 � T < 3.981 × 106 K
(4.169 × 10−26)T 0.33 if 3.981 × 106 � T < 1.995 × 107 K
(2.399 × 10−27)T 0.5 if T � 1.995 × 107 K.

Figure 1. Cooling curve with vertical dotted lines overplotted to delineate
several different temperature regimes which we consider in Section 3.

The lower temperature cut-off of the cooling function at 310 K is
unphysical, although Rosen, Bregman & Norman (1993) argue that
truncating it there is a way to model the contribution to the ISM
pressure from sources such as magnetic fields and cosmic rays,
which do not decrease as the gas radiatively cools.

2.1 Implementation of star formation and feedback

Following Cen & Ostriker (1992), we assume that star formation
is inevitable if a region is contracting (∇ ·v < 0), cooling rapidly
(t cool < t dyn and T gas � T min), and is overdense (ρ > ρ crit). Since
we check the grid on a cell-by-cell basis to see if these conditions
are met, each time-scale is computed for each grid cell. Here t dyn

is the dynamical collapse time-scale, i.e. tdyn = √
3.0π/(32Gρtot)

where ρ tot is the sum of the gas density, ρ, and the stellar density.
t cool is the cooling time-scale, i.e. t cool = kT / n�, where n is the gas
particle number density. T min is the minimum of our cooling curve,
310 K, and ρ crit for the different simulations is specified in Table 1.
If all our star-forming criteria are met within a grid cell then we
convert the following amount of gas

�mgas = ε
�t

tdyn
ρgas�x3,

into a ‘star particle’, where ε is a star formation efficiency param-
eter which we take to be 0.1 unless otherwise stated, and �t is the
updating time-step. We only allow at maximum 90 per cent of the
gas in a cell to be converted to stars in one time-step. In practice,
however, once supernovae inject hot gas into the medium, the up-
dating time-step is short as it is set by the hot, low-density gas. As a
result �t < t dyn, and this 90 per cent threshold is never reached. We
give the new star particle the same velocity as the gas out of which
it formed and we follow the stars dynamically. The star particle is
labelled with its mass, m �, its formation time, t SF, and the dynamical
time, t dyn, of the gas out of which it formed.

For the purposes of the feedback, however, rather than assume that
the ‘star particle’ formed instantaneously at t SF, we spread the star
formation over several dynamical times by computing the amount
of gas mass that would form stars after time t SF to be:

�mstars(t) = m�

(t − tSF)

τ 2
exp

[−(t − tSF)

τ

]
(1)
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Table 1. Summary of the performed runs. All of the runs have radiative cooling. The first three columns indicate
whether self-gravity, star formation and/or feedback are activated. ρ crit is the density threshold for star formation,
ε is the star formation efficiency and the final column indicates the grid resolution. Each simulation cube is
1.28 kpc per side.

Self-gravity Stars Feedback ρ crit (at cm−3) ε Grid resolution (pc)

A – – – – – 5
B1 – yes – 10. 0.1 10
B2 yes yes – 10. 0.1 10
B3 – yes yes 10. 0.1 10
B4 yes yes yes 10. 0.1 10
B5 yes yes yes 1. 0.1 10
B6 yes yes yes 10. 0.01 10
C1 – yes – 10. 0.1 20
C2 yes yes – 10. 0.1 20
C3 – yes yes 10. 0.1 20
C4 yes yes yes 10. 0.1 20
C5 yes yes yes 1. 0.1 20
C6 yes yes yes 1. 0.01 20

where τ = max(t dyn, 10 Myr). With this time-dependent star for-
mation rate, stars form at an exponentially decreasing rate after a
dynamical time. If the dynamical time-scale of the gas in a star-
forming cell is shorter than the typical lifespan of a massive star,
i.e. 10 Myr, then 10 Myr is used in place of t dyn in equation (1)
for the value of τ . Then, as a crude model of a stellar wind, we
return 25 per cent of �m stars to the gas, and since this returned mass
has the velocity of the ‘star particle’ we alter the momentum of the
gas appropriately. Finally assuming only the occurrence of Type
II supernovae, we add 10−5 of the rest-mass energy of �m stars to
the thermal energy of the gas (Ostriker & Cowie 1981). The super-
novae input is added locally into one cell. We explore the limitations
of our supernovae implementation in future work. As we do not
have the resolution to follow every individual star and therefore to
sample a realistic initial mass function (IMF) for them, each star par-
ticle is more like a small star cluster with a typical mass in the range
∼120 –220 M�.

Table 1 presents the simulations we ran, listing the values of the
parameters for star formation and feedback. Although we performed
several simulations with a density threshold for star formation, ρ crit,
set to 1 atom cm−3 (runs B5, C5 and C6), for the remainder of the
paper we focus only on the runs with ρ crit = 10 atom cm−3. This is
because we found that dropping the density threshold by one order
of magnitude to 1 atom cm−3 did not change the SFR by a factor 10,
but merely by about 10 per cent at the peak of star formation. As
Table 1 indicates, we also experimented with the value of ε and found
that taking a value of ε = 0.01 (10 times smaller than our fiducial
value) left the conclusions presented in this paper unchanged, i.e.
the medium became porous and the SFR peaked at roughly the same
value although with a slight time delay compared to the run with
ε = 0.1.

3 G E N E R A L F E AT U R E S O F T H E
M U LT I P H A S E M E D I U M

We begin by showing the time evolution of one of our simulations,
namely B4, which includes all the physical processes we consid-
ered, namely ‘turbulent’ initial conditions (as defined in Section
2), radiative cooling, self-gravity, star formation and feedback. In
Fig. 2 we show the gas density, temperature and pressure in a 12.8 pc
× 1.28 kpc × 1.28 kpc slice of this run. Due to the compression
caused by turbulence and self-gravity, the gas in certain regions sat-

isfies our criteria for star formation. Following their formation, this
first generation of stars soon explodes as supernovae, releasing hot
gas into the interstellar medium. The morphologies of the hot bub-
bles are extremely non-spherical due to the fact that the supernovae
are releasing their thermal energy into a spatially inhomogeneous
and non-stationary medium. Because this hot, low-density gas has a
long cooling time and because the star formation rate is sufficiently
high, subsequent generations of supernovae bubbles overlap, filling
more and more of the volume. Ultimately the density and tempera-
ture span more than six orders of magnitude in such a simulation and
are anticorrelated: high-density regions are cold, and low-density
regions are hot. As the third column in Fig. 2 shows, this anticorre-
lation results in near pressure equilibrium between these two phases
of the gas. Nevertheless the dense gas is about one order of mag-
nitude lower in pressure than the low-density gas indicating that a
thermal instability is active. Other regions which are out of pressure
equilibrium by 1–2 orders of magnitude are those which have just
experienced thermal energy input from supernovae. Self-gravitating
gas would also appear out of pressure equilibrium, something we
see in later stages of the simulation.

The dynamical state of the stars and of the gas in different tem-
perature regimes in the simulation is summarized by a plot of the
average velocity dispersions (Fig. 3). Guided by some of the features
in the cooling curve (see Fig. 1), we divide the temperature into the
following four categories: (I) T < 2000 K, (II) 2000 < T < 105 K,
(III) 105 < T < 4 × 106 K, (IV) 4 × 106 K < T . We compute the
average velocity dispersion of the gas in each of these four regimes,
and in addition, we calculate the mass-weighted velocity dispersion
of the gas, as well as the mass-weighted velocity dispersion of the
stars. As the stars are assigned the velocity of their progenitor gas
at formation, their velocity dispersion closely follows the velocity
dispersion of the cold gas. Furthermore, we find that with the ex-
ception of the hottest phase (IV), the velocity dispersion of the other
phases approximately settles to the following values: (I) 15 km s−1,
(II) 30 km s−1 and (III) 75 km s−1. What is very striking in the plot
of the velocity dispersions is the high velocities (∼500 km s−1) at-
tained by the hot, low-density component of the gas. The densest
structures which provide the raw material for star formation, collide
and break apart, but are also subject to stripping via hydrodynamical
and thermal instabilities when this hot, low-density material flows
rapidly past them. The picture of a ‘violent interstellar medium’
(McCray & Snow 1979) emerges.
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Figure 2. Time evolution of the logarithm of the gas density (first column), temperature (second column) and pressure (third column) in a 12.8 pc × 1.28 kpc
× 1.28 kpc slice for run B4.

Regarding the evolution of the thermal state of the gas, this is well
portrayed in phase diagrams of the gas (bottom row of Fig. 4) which
show the distribution of the mass fraction of the gas as a function of
its temperature and density. Given our initial conditions of uniform
density and temperature, if we were to plot a phase diagram of the
gas at time t = 0 Myr, all the gas would occupy a single point.
Because the initial temperature (105 K) of the gas coincides with
the peak of the cooling curve, by 9 Myr (first panel of bottom row

of Fig. 4) the majority of the gas quickly radiatively cools to an ap-
proximately isothermal state at a temperature corresponding to the
minimum of the cooling curve, i.e. 310 K. As we instantaneously
imprint a spectrum of velocity perturbations at the beginning of the
simulation, the gas acquires a range of density values and therefore
has a spread in densities by this time. Thereafter, with the injection
of hot gas into the medium, a tail of low-density, hot gas appears.
However, as gas with temperatures 105 < T < 4 × 106 K (phase III)
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Figure 3. Time evolution of the logarithm of the velocity dispersion in run
B4 for the gas in different temperature regimes: (I) T < 2000 K (triangles),
(II) 2000 < T < 105 K (plus signs), (III) 105 < T < 4 × 106 K (squares), (IV)
4 × 106 K < T (diamonds). The crosses mark the average mass-weighted
velocity dispersion of the gas and the asterisks that of the stars.

is thermally unstable, it gradually vanishes from the medium, divid-
ing the gas into two parts in the phase diagram. The majority of the
coldest (T ∼ 300 K) gas differs by approximately a one order of
magnitude pressure jump from gas with T � 5 × 105 K. Finally the
pressure of both the hot and cold gas changes with time. It rises as
more and more hot gas fills the simulation volume, a situation that
would probably be different if hot gas were allowed to escape the
box.

Figure 4. Time evolution of the density PDF (top row) and phase diagrams (bottom row) for run B4 (1283 run with star formation, feedback and self-gravity).
In the phase diagrams, the dotted vertical (horizontal) line marks the critical density, ρ crit (temperature, T crit), for star formation. Dotted diagonal lines mark
lines of constant pressure, and are labelled for the t = 0 Myr frame: P = 106, 105, 104 and 103 k B cm−3 K. Dashed diagonal lines (labelled for the t = 0 Myr
frame) mark the Jeans length: λJ = 10 pc, 34 pc, 113 pc, 380 pc and 1.28 kpc.

Although complex, pictures of the gas density and temperature
distribution in a two-dimensional slice through the simulation vol-
ume do not capture the intricacy of the three-dimensional structure.
In an attempt to display this structure, in Fig. 5 we plot isodensity
surfaces of the gas for ρ = 10−3, 1, 10 and 50 atom cm−3 at 50 Myr.
It is clear from these figures that the hot, low-density component
fills most of the volume, while the densest regions fill the small-
est fraction of the space, and are scattered throughout the box. A
three-dimensional rendering of the stellar density at the same time
instant (Fig. 6), reveals traces of the imprint of the high-density gas
distribution and encouragingly bears some qualitative resemblance
to the distribution of Hα emission in disc galaxies (e.g. NGC 4631;
Wang et al. 2001).

4 QUA N T I F Y I N G T H E S T RU C T U R E A N D
E N E R G E T I C S O F T H E M U LT I P H A S E M E D I U M

In an effort to assess what determines star formation rates, we sys-
tematically examine how different physical processes change the
structure and the energetics of the interstellar medium. The se-
quence of runs listed in Table 1 is designed to isolate the effects
of successively more complicated physical processes. A plot com-
paring the star formation rates for this sequence of runs (Fig. 7)
invites us to study what keeps star formation at a minimum and
alternatively what is necessary to drive it to high values. Resolution
effects immediately manifest themselves in Fig. 7. The 643 and 1283

runs start from the same initial conditions. Preceding star formation,
feedback is non-existent, but self-gravity plays a larger role in the
643 run where a grid cell of equivalent density to that in the 1283

grid is eight times more massive. Therefore in the 643 run with only
self-gravity (run C2), the SFR rises more rapidly at earlier times
than for the comparable run performed on the 1283 grid (run B2).
Once feedback occurs, a mechanism supplementary to turbulence
exists for creating high density contrasts which are stronger in the
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Figure 5. Isodensity surfaces of the gas for run B4 and ρ = 10−3, 1, 10 and 50 atom cm−3.

higher resolution runs. This causes higher peaks of SFR in the 1283

runs with feedback (runs B3 and B4) as compared to the equivalent
643 runs (C3 and C4). On the other hand, feedback also creates an
extra source of pressure to fight self-gravity which explains why
the C2 run leads to higher SFRs at earlier times than the C3 and
C4 runs. What remains unclear without performing a simulation at
still higher resolution is whether the indistinguishability between
the 1283 runs with feedback regardless of whether or not there is
self-gravity (runs B3 and B4) is a manifestation of convergence or

Figure 6. Isodensity surface of the stellar density for run B4 and ρ� = 0.1
M�/pc3.

coincidence. However, we believe convergence is the more probable
explanation as increasing the resolution tends to increase the dom-
inance of feedback processes over self-gravity. More specifically,
in the case of the 643 runs a rise in the SFR is driven more rapidly
when self-gravity is included. In contrast, star formation increases
at similar rates regardless of whether self-gravity is included in the
1283 runs. Therefore we do not see any reason why this trend should
be inverted by further increasing the resolution.

Before proceeding, we calculate roughly the supernovae rate cor-
responding to the measured star formation rates in our simulations.
In our 1.283 kpc3 box, typical star formation rates are SFR ∼0.1
–0.8 M� yr−1. Scaling these values to a Milky Way type galaxy,
where M MW is the mass of gas in the Milky Way, and M box is the
mass of gas in our simulation cube,

SFR (MMW/Mbox) ≈ 100–800 M� yr−1. (2)

For a Salpeter IMF there is approximately 1 SN/200 M�, imply-
ing that the typical supernovae rates in our simulation volume are
∼0.5 –4 SN yr−1. Furthermore, with this scaling to higher mass
the projected gas surface density increases by about four orders
of magnitude bringing both the SFRs and surface densities to val-
ues representative of the starburst regime in the Kennicutt relation
(Kennicutt 1998).

A visual examination of a 2D snapshot of the gas density, tem-
perature and pressure taken at the same time (t = 45 Myr) for
runs including different physics is useful for comparing some of
the consequences of the different processes. Fig. 8 clearly shows
how self-gravity, which is a radially directed force towards regions
of locally high density, causes high-density regions to take on a
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Figure 7. Time evolution of the star formation rate for a series of runs (see Table 1) differing in their physics. The left panel displays the results from runs C1
(diamonds), C2 (squares), C3 (triangles) and C4 (asterisks). The right panel displays the results from runs B1 (diamonds), B2 (squares), B3 (triangles) and B4
(asterisks). Symbols are the measured SFRs and the dotted and dashed lines are analytic models from Silk (2001).

Figure 8. The gas density, temperature and pressure at time t = 45 Myr in a 12.8 pc × 1.28 kpc × 1.28 kpc slice for runs A, B1, B2 and B4 (see Table 1 for
the specifications of each of these runs).
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more spherical appearance. Furthermore, all the runs without feed-
back have gas with pressure spanning over approximately six orders
of magnitude, and a small range in temperatures compared to the
run with feedback. The low-density gas regions in the runs without
feedback are cold (T ∼ 300 K) and are created by adiabatic cool-
ing during extreme expansion in certain regions of the ‘turbulent’
medium. Another feature that appears in this sequence of simula-
tions is that the dense structures in the run with feedback are sharper
due to destruction of intermediate density material by thermal and
hydrodynamical instabilities.

4.1 Probability density function of mass density

A density probability distribution function (PDF) is a simple one-
dimensional statistical measure of the structure of a medium. In
practice, for simulations performed on a grid, PDFs are instan-
taneous histograms tallying the number of grid cells of a certain
density in the simulation. Under the premise that stars form in high-
density regions, the statistical properties of the density field, itself
non-linearly coupled to the velocity field, might give clues to the
process of star formation. Efforts to uncover how the gas density or-
ganizes itself in media structured by different dynamical processes
are ongoing. Vázquez-Semadeni (1994) presented a statistical ar-
gument to show that turbulent (random), supersonic, compressible
flows naturally generate hierarchical structure without necessitating
an appeal to things like fragmentation in a gravitationally unstable
system (Hoyle 1953). In the limit of very high Mach numbers these
flows have a pressureless behaviour and if, in addition, self-gravity
is negligible then the hydrodynamical equations are scale-invariant.
Consequently, whatever the density in a given region, that region has
the same probability of producing a relative fluctuation with respect
to its normalizing density, as any other region in the flow. Assuming
that in a random flow successive density steps are independent, the
central limit theorem dictates that the density distribution should be
log-normal. And indeed, the two-dimensional, essentially isother-
mal (γ = 1.0001) simulations of Vázquez-Semadeni (1994) of a
weakly compressible (M ∼ 1), turbulent flow without self-gravity
developed log-normal density PDFs both on the large scale of the
simulation and in subregions within the simulation.

Subsequently, numerical experiments of three-dimensional,
isothermal, randomly forced, supersonic turbulence by Padoan,
Nordlund & Jones (1997) also found that the gas density follows a
log-normal distribution,

PDF = 1

σ
√

2π
e−(lnρ−〈lnρ〉)2/2σ 2

. (3)

Furthermore they observed empirically that the dispersion, σ , of the
log-normal scales with the root-mean-squared Mach number, M rms,
as follows:

σ 2 = ln

[
1 +

(
Mrms

2

)2
]

(4)

or, for the case of linear dispersion,

σlinear = Mrms

2
. (5)

These dispersion relations reflect the fact that in a medium with
higher M rms, the gas achieves greater density contrasts. Passot &
Vázquez-Semadeni (1998) found the same linear scaling relation
for the isothermal case. A formal proof for the log-normal PDF
in the case of isothermal, supersonic turbulence was provided by
Nordlund & Padoan (1999) based on the formalism given in Pope
& Ching (1993).

Scalo et al. (1998) and Passot & Vázquez-Semadeni (1998) ex-
tended this work on isothermal flows by considering the polytropic
case. Having conducted two-dimensional simulations including var-
ious combinations of physical processes (e.g. self-gravity, magne-
tohydrodynamics, Burgers turbulence), Scalo et al. (1998) found
PDFs that were more consistent with power laws than with log-
normal distributions. Seeking to understand this result and its dis-
crepancy with previous work on isothermal flows which consis-
tently found log-normal distributions, Scalo et al. (1998) performed
one-dimensional simulations of forced, supersonic, polytropic tur-
bulence and uncovered a log-normal PDF for the cases where either
the gas was isothermal (γ = 1) or where the Mach number was small
(M 	 1). Otherwise, when γ < 1, power laws developed for densi-
ties larger than the mean. Alternatively, Nordlund & Padoan (1999)
interpreted the results of Scalo et al. for the PDFs occurring in the
γ 
= 1 case as skewed log-normals and Passot & Vázquez-Semadeni
(1998) provided a mathematical framework for understanding why
these distributions arose.

Our work extends these investigations on the PDF in the direction
of the cases where the ISM is constrained neither to be isothermal
nor polytropic. As a result our local temperature and pressure are not
simple functions of the density but arise from the evolution of the
thermal energy. Because we consider processes (e.g. radiative cool-
ing, self-gravity, star formation) whose effectiveness depends on the
density, the hydrodynamic equations are no longer scale-invariant.
Therefore the condition of randomness between subsequent density
fluctuations is violated and one cannot expect a log-normal density
PDF (e.g. Vázquez-Semadeni 1994). In our series of experiments
of increasing complexity (see Table 1), the simplest simulation we
performed was of non-isothermal supersonic turbulence (run A).
Despite the inclusion of density-dependent cooling processes, we
found that the structure of the gas quickly evolved to a density PDF
consistent with a log-normal. This is not a surprising result since
without a heat source the majority of the gas quickly cools to a
nearly isothermal state (see bottom row of Fig. 9) with an average
temperature corresponding to the minimum of the cooling curve
(horizontal dashed line in bottom row of Fig. 9). Furthermore, the
scaling for the dispersion of the PDF given by Padoan et al. (1997)
continued to hold. In fact, rather than fit log-normal functions to our
density PDFs, we measured the average of the logarithm of the gas
density, 〈log10ρ〉, and the M rms of the gas at different time instances
and then overplotted the prediction of Padoan et al. (1997) for the
log-normal distribution. For the runs where we formed stars (with-
out self-gravity or feedback) in addition to having radiative cooling
(runs B1 and C1), the gas density PDF continued to have the same
behaviour: the M rms of the system progressively declined with time,
while the density PDF remained consistent with a log-normal dis-
tribution (Fig. 10).

The runs which showed the first departure from log-normal den-
sity PDFs were the runs which included self-gravity (runs B2 and
C2) but still no feedback (Fig. 11). Repeating the exercise of mea-
suring the average of the logarithm of the gas density, 〈log10ρ〉, and
the M rms of the gas at different times, we found two differences: (a)
the M rms initially declined but then stabilized at a value higher than
that seen in the runs without self-gravity, and (b) the log-normal PDF
predicted by Padoan et al. (1997) consistently underpredicted the
distribution at high gas density. A power law fitted the high-density
tail well. In one-dimensional simulations of Burgers flows, i.e. in-
finitely compressible flows, power laws were also found to be good
fits to the density PDFs (Gotoh & Kraichnan 1993). We therefore
interpret the power-law behaviour for the run with self-gravity, as
reflecting the added possibility of the gas, once it has a high density,
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Figure 9. Time evolution of the density PDF (top row) and phase diagrams (bottom row) for run A (1283 run with no star formation, no feedback and no
self-gravity). The thick dashed line overplotted on the measured PDFs (symbols) is the log-normal PDF predicted by Padoan et al. (1997). In the phase diagrams,
the dotted vertical (horizontal) line marks the critical density, ρ crit (temperature, T crit), for star formation. Dotted diagonal lines mark lines of constant pressure,
and are labelled for the t = 0 Myr frame: P = 106, 105, 104 and 103 k B cm−3 K.

Figure 10. Time evolution of the density PDF (top row) and phase diagrams (bottom row) for run B1 (1283 run with star formation, no self-gravity, and no
feedback). The thick dashed line overplotted on the measured PDFs (symbols) is the log-normal PDF predicted by Padoan et al. (1997). In the phase diagrams,
the dotted vertical (horizontal) line marks the critical density, ρ crit (temperature, T crit), for star formation. Dotted diagonal lines mark lines of constant pressure,
and are labelled for the t = 0 Myr frame: P = 106, 105, 104 and 103 k B cm−3 K.

to compress to even higher density, reminiscent of the behaviour in
Burgers flows. Klessen (2000) also explored the form of the density
PDF for the cases of decaying and driven self-gravitating turbulence.
Although he found a departure from log-normal at high densities,
the departure could not be characterized by a power law.

When we add feedback to the list of simulated processes, either
with self-gravity (runs B4 and C4) or without (runs B3 and C3),
the density PDF becomes markedly bimodal (Fig. 12), illustrat-
ing that most of the simulation volume is occupied by low-density
gas. A bimodal density distribution is also a sign of a thermal
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Figure 11. Time evolution of the density PDF (top row) and phase diagrams (bottom row) for run B2 (1283 run with star formation and self-gravity but no
feedback). The thick dashed line overplotted on the measured PDFs (symbols) is the log-normal PDF predicted by Padoan et al. (1997). The solid line with a
slope of −1.5 plotted at t = 85 Myr is a fit to the high-density end of the PDF. In the phase diagrams, the dotted vertical (horizontal) line marks the critical
density, ρ crit (temperature, T crit), for star formation. Dotted diagonal lines mark lines of constant pressure, and are labelled for the t = 0 Myr frame: P = 106,
105, 104 and 103 k B cm−3 K.

Figure 12. Comparison of the PDFs at 110 Myr for runs with different
physics.

instability (Vázquez-Semadeni, Gazol & Scalo 2000) the conse-
quences of which we will discuss in a future paper (Slyz, Devriendt,
Bryan & Silk, in preparation). For the runs with self-gravity, the
high-density power-law tail disappears. Perhaps it can be argued
that the high-density part of the density PDF may be fitted with a
log-normal distribution (Fig. 13). The exercise of overplotting the
log-normal given by Padoan et al. (1997) is not possible because the
M rms measured for the entire simulation box does not correspond to
the M rms of the high-density gas for which the log-normal function

Figure 13. Log-normal fit to high-density end of the PDF for run B4 at t =
85 Myr. The scaling we use for the fit is a log-normal with average density
of 101.7 atom cm−3 and with a dispersion of ∼101.22 atom cm−3.

may be a good description. Hence we can only fit log-normals to
the high-density gas, similar to what others, e.g. Wada & Norman
(2001), Kravtsov (2003), do in their global simulations of the ISM.

The interest of describing the density structure of the ISM with
a single function, such as the log-normal, lies in finding a link be-
tween the gas density averaged over kiloparsec sized regions and
the high-density regions which might form stars. This is precisely
the link required for an explanation of the Schmidt law. Rewriting
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the Schmidt law in a form where the star formation rate is equal to
some constants multiplied by the fraction of gas in high-density re-
gions and by the gas density averaged over large scales (his equation
7), Elmegreen (2002) emphasized that star formation rates depend
on the geometry of the density field, i.e. the PDF. If the shape of
the density PDF is universal, then the fraction of gas in high-density
regions is known. Consequently, if the high-density regions are also
self-gravitating, then the fraction of gas available for star forma-
tion is also known. Admittedly, the density PDF contains no spatial
information, hence there is no reason for which the high-density
regions should find themselves to be spatially contiguous, so that
they comprise regions of mass greater than the Jeans mass. In fact,
Fig. 11 clearly shows that at least some of the dense gas regions are
not contiguous because if they were they would simply not persist
as all the gas would be converted to stars on a dynamical time-scale
since these regions are well above ρ crit and cold. We therefore have
to identify these regions with divergent gas flows.

A two-dimensional study of the ISM in a galactic disc by Wada
& Norman (2001) has claimed that the log-normal distribution is a
robust description of the ISM density distribution over many orders
of magnitude in density, regardless of the simulated physics. More
specifically, in their simulations the presence of stellar feedback
does not change the shape of the PDF but increases the dispersion of
the log-normal. In three-dimensional simulations of a high-redshift
galaxy performed in a cosmological context, Kravtsov (2003) finds
a density distribution similar to Wada & Norman (2001). Its shape at
every redshift epoch has a flat region at ρ gas � 1 –10 M� pc−3 and
a power-law distribution at high densities. He claims that the log-
normal distribution is a fair description of the high-density tail of the
PDF and agrees with Wada & Norman (2001) on the insensitivity
of the distribution to feedback, except at the low-density end, where
the simulation with feedback produces more low-density gas. As
Fig. 12 shows, our less realistic study of star formation occurring
in a periodic box without the global gravitational galactic potential
or the shear instabilities present in a self-gravitating rotating disc,
appears to be more sensitive to the input physics. Only the runs which
include stellar feedback are nearly equivalent, regardless of whether
there is self-gravity. When log-normals are overplotted for the runs
without feedback, the position of the maximum of the log-normal is
shifted to lower densities by more than one order of magnitude from
the position of the maximum of the log-normal fit to the high-density
part of the PDF for the runs with feedback. Indeed the densities in
certain cells for the run with only self-gravity reach the same high
values as the runs with feedback, but a much smaller fraction of
the simulation volume has these high densities. Another blatant
difference between the PDFs we find in our runs with feedback and
the PDFs found by Wada & Norman (2001) and Kravtsov (2003)
is that their runs do not show as high a peak at low densities. The
smaller quantity of low-density gas in their simulations is likely due
to the much lower supernovae rates in the simulations of Wada &
Norman (2001) (0.01 SN yr−1 as compared to 0.5–4 SN yr−1 in our
simulations) and in the case of Kravtsov (2003), to the more realistic
boundary conditions, which allow tenuous, hot gas to escape the
disc.

4.2 Energy spectra

Energy spectra of the ISM carry complementary information to that
given by a study of its density structure. With the density PDFs,
we confirmed that in many cases there exists a clear relationship
between the density contrast achieved and the M rms of a system (i.e.
σ linear ∼ M rms). But the M rms of a system is only a global measure-

ment of its kinetic energy content. With measurements of the kinetic
energy spectra, we expect to learn how the energy is distributed on
different spatial scales and how the different physical processes we
considered influence the time evolution of this distribution.

The Kolmogorov theory of incompressible, subsonic turbulence
predicts that energy fed on large scales progressively cascades to
smaller scales until it is dissipated by molecular viscosity on the
smallest scales in vortex rings. The transfer of energy is a local
process and the spectra of the velocity field is a power law with
Ek ∼ k−5/3 (Kolmogorov 1941). With supersonic, compressible tur-
bulence, strong shocks come into play. They allow energy to be trans-
ferred over widely separated scales and it is possible that rather than
being dissipated in vortex rings, the energy is ultimately dissipated
in sheets, filaments and cores (Boldyrev 2002). Given the analogy
between highly supersonic and pressureless flows, one might ex-
pect the compressible, supersonic flows to have the same behaviour
as Burgers turbulence with power spectra in the inertial regime
of the form Ek ∼ k−2 (Burgers 1974; Gotoh & Kraichnan 1993).
However, this appears to be true only in one and two dimensions.
In three dimensions, compressible, supersonic flows differ from
Burgers flows because they generate vorticity (Boldyrev 2002). In
three-dimensional simulations of compressible, supersonic, magne-
tized forced turbulence with Mach number initially ∼10, Boldyrev,
Nordlund & Padoan (2002) find energy power spectra in the inertial
range to be Ek ∼ k−1.74, i.e. close to the Kolmogorov value.

As we lack the grid resolution to ascertain if the energy spectra
in our simulations are tending towards power laws, we cannot make
any credible statements about the values of the power-law slopes.
Furthermore in incompressible turbulence, the energy spectrum is
a power law in the inertial regime (at k wavenumbers below the en-
ergy injection scale but above the energy dissipation scale). In our
simulations the feedback energy is injected on scales equivalent to
the grid resolution, i.e. the smallest scales, but it can propagate to
larger scales depending on the ISM dynamics. Therefore for the runs
with feedback the inertial regime has a more complicated meaning.
Instead in Fig. 14 we focus on the time development of the energy
spectra, and the presence of characteristic features. The standard
approach involves dividing the kinetic energy into two components:
a compressible one for which ∇ × vcomp = 0, and a solenoidal one
with ∇ · v sol = 0. In words, the compressible component measures
the strength of the shocks in the system, while the solenoidal com-
ponent measures the degree of rotation. Typically, the compressible
component is expected to decay faster than the solenoidal compo-
nent as the shock energy is transformed into vortical eddy motions.

Because we remove gas from the system to form stars, the ki-
netic energy whose spectra we measure is rather a specific kinetic
energy, i.e. we divide the instantaneous total kinetic energy by the
total gas mass present at that moment. In all our runs, the kinetic en-
ergy which is initially imprinted only on large scales quickly (within
∼30 Myr) redistributes itself to smaller scales as well. Following
this redistribution, for the run with neither self-gravity nor feed-
back (run B1), the compressible and solenoidal components of the
energy spectra progressively decay, all the while maintaining ap-
proximately the same form. The ratio E c/E s is always less than 1,
i.e. the compressible component decays faster than the solenoidal
one, but increases towards the dissipative regime. In high-resolution
simulations (5123, 10243) of decaying compressible turbulence with
Mach number initially on the order of 1 (an order of magnitude lower
than the initial Mach number in our simulations), Porter, Woodward
& Pouquet (1998) find a similar result with E c/E s ∼ 0.1. In con-
trast to these runs in which the kinetic energy decays, the runs with
self-gravity (run B2) and/or feedback (runs B3, B4), show energy
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B4:with fbk,B1:no fbk,
   no s–g    no s–g with s–g    with s–g

B2:no fbk, B3:with fbk,

Figure 14. Time evolution of the compressible (E c) and solenoidal (E s) components of the energy spectra for runs B1, B2, B3 and B4. Symbols denote energy
spectra at time intervals separated by 30 Myr. The solid line represents time t = 0 Myr. Plus signs: 30 Myr; asterisks: 60 Myr; filled diamonds: 90 Myr; open
diamonds: 120 Myr; open triangles: 150 Myr; crosses: 180 Myr; open squares: 210 Myr. We also draw a solid line through the symbols when they represent
the final time-step that we are displaying. Thick dashed lines indicate power laws with slopes similar to that of the last curve shown.

spectra which climb to higher amplitudes with time and have shal-
lower slopes than the decaying run (B1). Furthermore in plots of the
ratios of the compressible to solenoidal components, between 90
and 150 Myr the runs with feedback show a peak at ∼65 pc consis-
tent with what one would predict for the characteristic length-scale
for a simulation with supernovae expanding into a medium with
ambient pressure of P = 106 cm−3 K k B. More explicitly, ignoring
adiabatic and radiative losses, a supernova with 1051 erg of energy
will be halted by an ambient medium at this pressure when it has
expanded to a radius r ∼ (E/P)1/3∼ 65 pc. This signature in E c/E s

for the run with feedback points to a way to understand SFRs, which
we explore below.

5 N U M E R I C A L V E R S U S A NA LY T I C A L
S TA R F O R M AT I O N R AT E S

An alternative to searching for a generic density PDF as an explana-
tion for star formation rates, is to consider arguments concerning the
competition between the expansion of supernovae remnants and the
pressure which halts them. In this vein, Silk (1997, 2001) developed
porosity models of a regulated ISM. Introduced by Cox & Smith
(1974), the porosity, Q, is proportional to the product of the super-
novae rate per unit volume and the maximum extent of the 4-volume
of the supernovae remnants. In other words, the porosity measures
the fraction of hot gas, f h, in the ISM through the relation Q = −
ln(1 − f h). Silk reasoned that since the supernovae production rate

is proportional to the star formation rate (SFR), and the maximum
extent of a supernova remnant is limited by the ambient pressure,
the following expression arises:

Q = SFR G−1/2 ρ−3/2
gas (σgas/σf)

−2.72 (6)

where ρ gas is the gas density, σ gas is the gas velocity dispersion,
and σ f is a fiducial velocity dispersion that is proportional to
E1.27

SN m−1
SN ζ−0.2

g . Here E SN is the energy of a single supernova, ζ g is
the metallicity relative to solar of the ambient gas, and mSN is the
mean mass in newly formed stars required to produce a supernova.
For E SN = 1051 erg, ζ g = 1, and mSN = 250 M�, i.e. the case
where we assume only the occurrence of Type II supernovae with a
Miller–Scalo IMF, the fiducial velocity dispersion is ∼22 km s−1.

Our simulations with feedback provided a laboratory to test this
analytic description of the SFR. For the purpose of computing the
porosity of the medium, we measured the fraction of hot gas in
our volume, defining hot to be gas with temperature T � 4 × 106

K. For ρ gas in equation (6) we took the average gas density in our
simulation volume, and for σ gas we took the average mass-weighted
velocity dispersion of the gas. We kept the value for σ f at 22 km s−1.
Given these values as functions of time, we plotted as dotted and
dashed lines the expectation from equation (6) for the SFRs in Fig. 7.
Computing the actual star formation rates in the box by defining the
mass of newly formed stars to be the mass of stars formed in the
past 3 Myr, we overplotted the results as symbols in the same figure.
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Astonishingly, the analytic values match the measured rates to better
than a factor 2.

Given the simplifications in the derivation of the analytic model,
there was no a priori reason for the fit to be a good description of
the star formation rate in an inhomogenous, non-stationary model
of the ISM. For example, Silk takes the expression for the 4-volume
of the SNR remnant in its cooling phase from Cioffi, McKee &
Berschinger (1988). They derive it under the assumptions that the
supernova expands in a spherical manner, the ISM is homogenous
and uniform (i.e. no density gradients), there is no dust cooling or
thermal conduction, and the ambient ISM pressure is negligible un-
til the last stage of supernova evolution when the remnant merges
with the ambient ISM. In contrast, we find that at least in the ini-
tial stages of our simulations, the supernovae remnants are highly
non-spherical, the ISM is inhomogeneous with ubiquitous density
gradients and the ambient ISM gas pressure is highly non-negligible
(P = 105–106 cm−3 K k B). However, as more of the gas turns into
stars, and the hot phase fills the majority of the simulation volume,
the ISM does start to resemble something more in line with the
assumptions of Cioffi et al.

When we examine in Fig. 15 the time evolution of each of the
physical quantities entering into the analytic model for the SFR, we
find the following. The runs (B1 and C1) which produced the lowest
star formation rates have zero porosity and high fractions of cold gas
( f cold ∼ 0.8–0.9), but a continuously declining velocity dispersion.
The runs reaching a peak (runs B2, B3, B4, C2, C3) or multiple

Figure 15. Plots comparing the time evolution of the cold mass fraction,
porosity, average gas density, and mass-weighted velocity dispersion for runs
containing different physics, on the 643 and 1283 grid.

peaks of high star formation (run C4) all displayed depleted cold
gas fractions after their final star formation peak, a rise to a maximum
in its velocity dispersion at the peak, and either zero porosity for the
case of the runs with self-gravity but no feedback (runs B2 and C2)
or a porosity that levels off to a constant value around the time of the
SFR peak [Q ∼ 4–5 for the 643 case (runs C3 and C4), and Q ∼ 4 for
the 1283 case (runs B3 and B4) after the SFR peak]. We interpret the
behaviour in these parameters as reflecting the importance of a high
velocity dispersion for generating high SFRs. Indeed in the analytic
model for the SFR (equation 6), the gas velocity dispersion, σ gas,
plays the most important role, as it is raised to the highest power in
the expression. However, even with velocity dispersions sustained
at high values (σ gas ∼ 20 km s−1), SFRs will drop if the reserves of
cold gas decline.

6 D I S C U S S I O N

Given the simplicity of our simulations, we examine their relevance
for representing true star formation processes in real galaxies. The
first issue we address is whether the star formation rates we obtain
are consistent with the Kennicutt relation. In Section 4 we scaled
the mass in our simulation volume to that of the Milky Way, finding
that our star formation rates and surface densities were consistent
with star formation occurring in the starburst regime. If we do not
scale our SFRs and gas densities to a Milky Way type galaxy but
instead take them at face value we find that our initial 1 atom cm−3

gas density in a (1.28 kpc)3 volume yields in projection about a
30 M� pc−2 column density which lies at the boundary between
Kennicutt’s normal discs and centres of normal discs (Kennicutt
1998). Transforming our average star formation rate of 0.2–0.3 M�
yr−1 into a star formation rate per unit volume leads us to an average
star formation rate density of about 0.1 M� yr−1 kpc−2, on the high
side but in fair agreement with Kennicutt’s measurements for our
computed surface density (Kennicutt 1998, fig. 6). We note that
Kennicutt’s law is a static relation as it concerns space-averaged
quantities in local galaxies, and a moment in the history of these
galaxies is bound to exist when their main progenitor will be entirely
gaseous (i.e. with no stars yet formed) and the Kennicutt relation
will break. As our simulations start from an exclusively gaseous
medium, we do not expect our simulation to follow the Kennicutt
relation from the very beginning, but to move towards it as it does.
We nevertheless consider our simulations to be in a starburst mode
because the duration of the star formation episode is much shorter
than that of what one expects in either a disc or spheroidal galaxy.
But this is not unusual since we are only modelling a chunk of a
galaxy and are therefore neglecting effects on larger length- and
therefore time-scales.

The second issue we address is whether periodic boundary con-
ditions drive the high star formation rates seen in our simulations.
When hot gas starts to fill the bulk of the simulation volume, because
the boundary conditions trap the hot gas, conditions in the simula-
tion may be viewed as a pressure cooker and the increased pressure
may drive higher star formation rates. In our simulation by the time
the pressure cooker is operative, the SFRs are already at starburst
levels as seen when one scales the SFRs and gas densities to a Milky
Way type galaxy as we do in Section 4. To be more specific, for the
pressure cooker to be operative we have to wait ∼10 Myr for the
first supernovae to go off and then we have to wait for the volume
to become significantly filled by this supernovae generated hot gas
for the hot gas to be able to traverse the volume unobstructed by
cold, dense gas. According to Fig. 15, it takes on the order of 50
Myr for the hot gas filling fraction to be approximately 50 per cent,
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corresponding to a porosity of about 0.7. Hence boundary effects are
not dominant in shaping the star formation rate until after that time.
We also point out that the limitations of the boundary conditions
should not obfuscate the point that the manner in which we imple-
ment supernovae is a more important factor leading to the build up of
large quantities of hot gas in the medium. When we perform simula-
tions in all points identical to those presented in this paper but with
supernovae going off instantaneously, as opposed to exploding with
a more realistic 10 Myr time delay used in the work presented in
this paper, we get extremely low star formation rates (a few hundred
times smaller than those we get in our simulation here), because
the hot gas never fills a significant fraction of the simulation cube.
In other words, the periodic boundary conditions cannot dominate
the physics of star formation driven by hot gas pressure until the
hot gas has already been generated, and we find that this depends
strongly on the way the supernovae are implemented. As mentioned
in Section 1, we leave the discussion of this to a future paper.

The limitations of our closed, periodic box, and the absence of a
stratified external gravitational potential certainly keep our simula-
tions far from being representative of realistic galactic systems. For
example, a credible simulation of a disc galaxy would have to be
performed in a realistic cosmological context to capture such effects
as tidal encounters and stripping from neighbours. Excluding these
external stellar heating processes as well as spiral waves, results in
the neglect of processes that would increase the velocity dispersion
of the stars in real galaxies. Therefore our simulations certainly have
a higher fraction of cold ISM and cold stars after a gas consump-
tion time which may prolong and strengthen star formation in our
simulations.

We also emphasize that with our crude assumption of a closed
box not only can no material escape the box, affecting star formation
rates once hot gas permeates the simulation volume, but no material
can enter the simulation volume either. It could well be that accretion
of cold material is more relevant for star formation in real discs
than either the external star heating processes missing from the
simulations discussed above or the fact that hot gas cannot leave
the simulation volume. One can argue that perhaps the simulations
presented in this paper are more representative of what happens in
the central kiloparsec of a spheroidal starburst galaxy. In that case
the potential well might indeed trap a fraction of the hot gas and the
pressure cooker environment which comes into play after high star
formation rates occur in the simulation, if not as drastic as in our
simulations, might well be fairly realistic.

7 S U M M A RY A N D C O N C L U S I O N S

To unravel which global parameters control star formation, we have
examined star formation occurring in media whose dynamics are
structured by various combinations of physical processes (e.g. ‘tur-
bulence’, radiative cooling, self-gravity, feedback from supernovae
and stellar winds). We sought to understand our models of the ISM
from structural and dynamical perspectives, finding that in some
cases there was a well-defined link between the two. In particular,
measurements of the density PDFs confirmed that for the simula-
tions without feedback, log-normals were an adequate description of
the structure of the medium, and that the density contrasts achieved
in the media were directly correlated to their M rms. Log-normals
consistently underpredicted the high-density end of the runs with
self-gravity which appeared to be well-fitted by a power law. For
the runs with feedback, the dense gas reached higher densities than
those reached by the runs without feedback, implying that in these
simulations, feedback was positive in the sense that it encouraged

higher star formation rates. However, the PDF for the runs with feed-
back had a distinctly bimodal shape with the majority of the volume
filled by low-density gas. In summary, we did not find a universal
PDF. Most markedly, runs with feedback had a different PDF from
the runs without feedback, although arguably the high-density end
might be fitted by a log-normal.

Measurements of the energy spectra in our simulations were con-
sistent with the information provided by the density PDFs. Self-
gravity alone was sufficient to sustain the kinetic energy of the
medium, and hence maintain the high density contrast we observed
in the PDFs. Feedback also succeeded in keeping high quantities of
kinetic energy in the media and inspection of ratios of compressible
to solenoidal energy revealed that supernovae were pumping energy
into the system at a characteristic scale consistent with the ambient
pressure in the hot, low-density component of the medium.

For the runs with feedback, comparing the Silk (2001) star for-
mation model to the measured values of the SFRs in our simulations
revealed a good match that led us to inspect the parameters involved
in Silk’s prescription. They showed clearly that the SFR depends
strongly on the underlying velocity field which we saw could be
energized by self-gravity and/or feedback to produce high density
contrasts. Without a means to create these high densities, star for-
mation rates decline even in the presence of a large reservoir of cold
gas.

In light of the issues neglected in our simulations, we stress that
the simplifying assumptions made in this paper facilitated our choice
to start from as strong a local physical basis as possible before
trying to tackle star formation in a more global context. As such we
neglect numerous physical processes which may invalidate partially
or completely our current results, but this remains to be addressed
in future work. Nevertheless we hope that the present work sheds
some light on the local physics that should be included in future
realistic simulations of star formation.
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Turbulence. Cambridge Univ. Press, Cambridge, p. 218
Ostriker J. P., Cowie L. L., 1981, ApJ, 243, L127
Padoan P., Nordlund Å., Jones B., 1997, MNRAS, 288, 145
Passot T., Vázquez-Semadeni E., 1998, Phys. Rev. E, 58, 4501
Pope S. B., Ching E. S. C., 1993, Phys. Fluids A, 5, 1529
Porter D. H., Woodward P. R., Pouquet A., 1998, Phys. Fluids, 10, 237

Prendergast K. H., Xu K., 1993, J. Comput. Phys., 109, 53
Rand R. J., van der Hulst J. M., 1993, AJ, 105, 2098
Rand R. J., Kulkarni S. R., Hester J. J., 1990, ApJ, 352, L1
Rosen A., Bregman J. N., 1995, ApJ, 440, 634
Rosen A., Bregman J. N., Norman M. L., 1993, ApJ, 413, 137
Sarazin C. L., White R. E., 1987, ApJ, 320, 32
Scalo J. M., Vázquez-Semadeni E., Chappell D., Passot T., 1998, ApJ, 504,

835
Schmidt M., 1959, ApJ, 129, 243
Silk J., 1997, ApJ, 481, 703
Silk J., 2001, MNRAS, 324, 313
Slavin J. D., Shull J. M., Begelman M. C., 1993, ApJ, 407, 83
Slyz A., Prendergast K. H., 1999, A&AS, 139, 199
Spitzer L., 1956, ApJ, 124, 20
Stanimirovic S., Staveley-Smith L., Dickey J. M., Sault R. J., Snowden

S. L., 1999, MNRAS, 302, 417
Tenorio-Tagle G., 1981, A&A, 94, 338
Vázquez-Semadeni E., 1994, ApJ, 423, 681
Vázquez-Semadeni E., Gazol A., Scalo J., 2000, ApJ, 540, 271
Wada K., Norman C. A., 2001, ApJ, 547, 172
Wang Q. D., Immler S., Walterbos R., Lauroesch J. T., Breitschwerdt D.,

2001, ApJ, 555, L99
Xu K., 1998, Gas-Kinetic Schemes for Unsteady Compressible Flow Sim-

ulations. VKI report 1998–03

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2004 RAS, MNRAS


