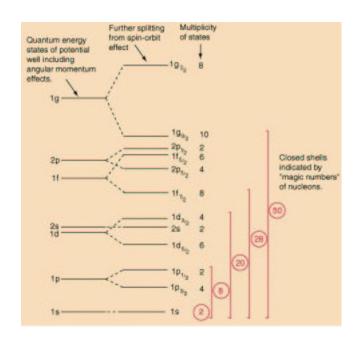
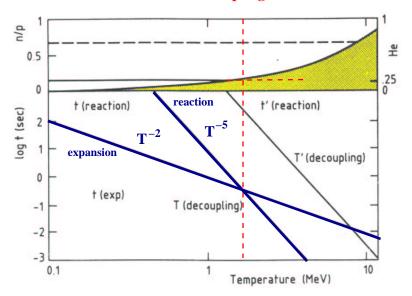

The Origin of the Elements


Literature:

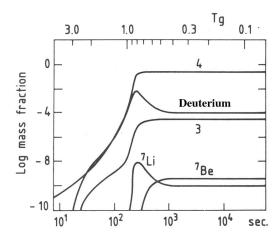
- H. Reeves, Online lectures on Primordial Nucleosynthesis, http://nedwww.ipac.caltech.edu/level5/Sept01/ Reeves/Reeves2.html
- Principles of Stellar Evolution and Nucleosynthesis, Donald Clayton (University of Chicago Press), classical standard graduate text
- Supernovae and Nucleosynthesis, David Arnett (Princeton University Press)
- I. Big Bang Nucleosynthesis
- II. Stellar Nucleosynthesis
- III. Explosive Nucleosynthesis


Main properties

- heavier elements are more difficult to form because of the larger Coulomb barrier, i.e. require higher energies (temperatures) during nuclear-burning phases in stars
- iron peak: most tightly bound nuclei
- the origin of light elements? (Li, Be, B are less tightly bound than He, C)
- neutron-rich elements beyond the iron peak require neutron captures

- the odd-even effect: elements with odd Z are rarer
- magic numbers: (from nuclear shell structure) elements with Z, N=2,8,20,28,50,82,126 are more stable \rightarrow doubly magic nuclei are particularly stable: e.g. He (Z=N=2), O (Z=N=8), Ca (Z=N=20), Ni (Z=N=28)

Big Bang Nucleosynthesis Neutrino Decoupling


ullet initially at $T > 1 \, MeV$, all weak interactions occur in statistical equilibrium

$$\nu + n \rightleftharpoons p + e; \quad \bar{\nu} + p \rightleftharpoons n + e; \quad n \rightleftharpoons p + e + \bar{\nu}$$

- \rightarrow the neutron-proton ratio is determined by statistical equilibrium, i.e. the Boltzmann distribution $n/p = exp(-\Delta M/kT), \ where \ \Delta M = 1.293 \, MeV.$
 - \bullet the n/p ratio is determined by the temperature at which neutrinos decouple
 - ho expansion timescale: $t_{exp} \propto (G\rho)^{-1/2} \propto T^{-2}$, (since $\rho \propto T^4$ in the radiation-dominated phase)
 - \triangleright weak reaction timescale: $t_{weak} \propto T^{-5}$.
 - $\rightarrow~$ neutrinos decouple at $T \simeq 10^{10}\, K \simeq 0.86 MeV$
 - \rightarrow n/p $\simeq 0.223$

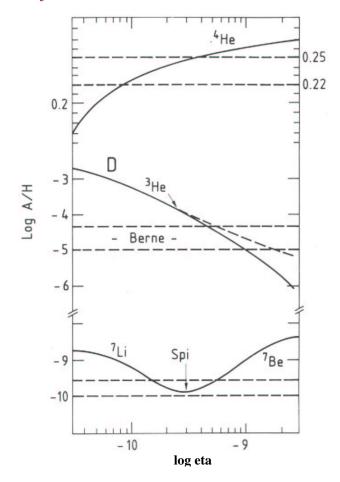
- the deuterium reaction $p + n \rightleftharpoons {}^2D + \gamma$ remains in equilibrium till the temperature has dropped to about 0.1 MeV (10⁹ K), reached after about 4 minutes
 - \triangleright during this period, the n's undergo β decay with a half life of 617 s
 - \rightarrow n/p drops to ~ 0.164

The Phase of Primordial Nucleosynthesis $(T < 0.1 \,\mathrm{MeV})$

• primordial reactions:

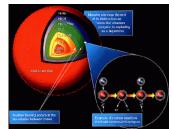
$$egin{array}{ll} \mathbf{p}+\mathbf{n} &
ightarrow & \mathbf{D}+\pmb{\gamma} \\ \mathbf{D}+\mathbf{p} &
ightarrow & ^{3}\mathrm{He}+\pmb{\gamma} \\ \mathbf{D}+\mathbf{n} &
ightarrow & ^{3}\mathrm{H}+\pmb{\gamma} \\ \end{array}$$

• there are no stable nuclides with mass 5 or 8 \rightarrow limits buildup of heavier elements

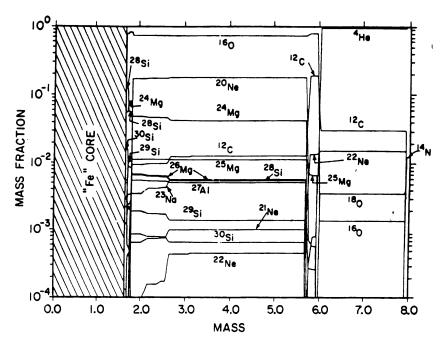

• some light elements form through reactions like

$$egin{array}{lll} ^4\mathrm{He} + ^3\mathrm{H} &
ightarrow \ ^7\mathrm{Li} + \gamma \ ^4\mathrm{He} + ^3\mathrm{He} &
ightarrow \ ^7\mathrm{Be} + \mathrm{e} &
ightarrow \ ^7\mathrm{Li} + \gamma \ \end{array}$$

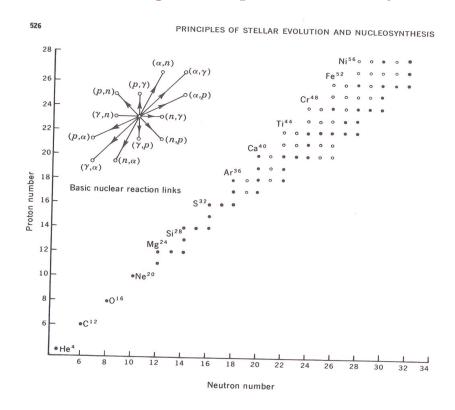
- the final abundance ratios depend on
 - by the n/p ratio determined by the decoupling temperature
 - \triangleright the competition of β decays and the rate of n+p reactions, which depends on the the nucleon to photon ratio η (the n+p rate depends on the nucleon/baryon density)
 - \triangleright at low nucleon density (η) : neutrons β decay
 - > at high nucleon density (the realistic case): most neutrons are incorporated into He
 - o number of He nuclei: 1/2 n (n: number of initial neutrons; 2 neutrons/He nucleus)
 - o number of H nuclei: p n (p: number of initial protons)
 - o helium mass fraction:


$$Y = \frac{4*1/2n}{4*1/2n + (p-n)} = \frac{2n}{p+n} = \frac{2n/p}{1+n/p} = 0.28$$
 (for $n/p = 0.164$)

- the production of deuterium and hence all other light nuclides depends strongly on the baryon density
 - \triangleright at high η , deuterium is efficiently destroyed by p or n captures (to produce nuclides of mass number 3)
 - \triangleright astronomical observations fix η in the standard model to $3-15\times 10^{-10}$ (assumes n/p ratio is fixed by standard particle physics; Universe is homogeneous)
 - \rightarrow baryon mass fraction: $\Omega \sim 0.01 0.02$


Stellar Nucleosynthesis

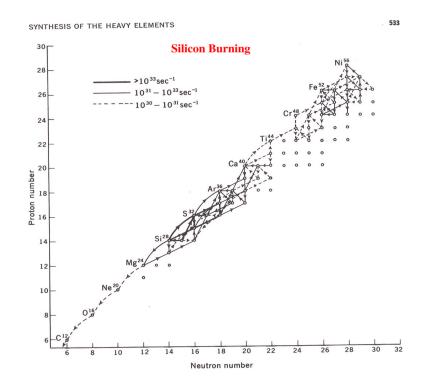
- ▶ Hydrostatic burning during the core evolution of the star builds up most elements up to Fe at ever higher temperatures
- $\begin{array}{c} \triangleright \text{ schematically: } 4\,H \rightarrow He, \\ 3\,He \rightarrow C, \ 2\,C \rightarrow Mg, \\ 2\,O \rightarrow S, Si, \ Si \rightarrow Fe \end{array}$



- ▷ onion-like presupernova structure
- > core collapses and elements in core are locked up, rest is ejected into the ISM (in particular O)
- ▶ also stellar wind ejection during AGB/supergiant phases

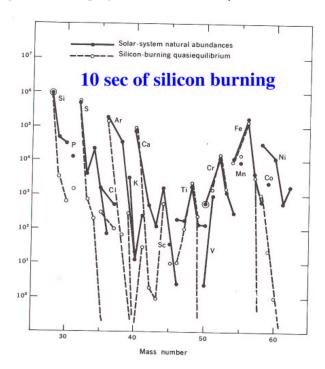
Final Structure of $8 \, \mathrm{M}_{\odot}$ Helium Core (Nomoto)

Silicon Burning and Explosive Nucleosynthesis



- after oxygen burning: mainly S, Si
- at $T \sim 2 \times 10^9$ K, elements start to photodisintegrate and eject light particles, in particular p's (γ, p) , n's (γ, n) and α 's (γ, α) that can react with other nuclei
- the least tightly bound nuclei are stripped more easily
- all reactions occur in both directions (i.e. forward and reverse reaction) → abundance pattern approaches nuclear statistical equilibrium (NSE)

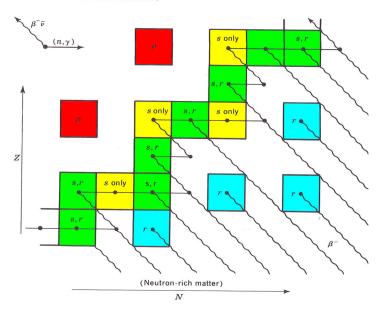
• there is a net excess of α capture reactions which build up alpha-rich elements (α -process)


$$egin{aligned} ullet^{28}\mathrm{Si} + lpha &
ightarrow ^{32}\mathrm{S} + lpha &
ightarrow ^{36}\mathrm{Ar} + lpha &
ightarrow ^{40}\mathrm{Ca} \ + 2\,lpha &
ightarrow ^{48}\mathrm{Ti} + lpha &
ightarrow ^{52}\mathrm{Cr} + lpha &
ightarrow ^{56}\mathrm{Fe} \end{aligned}$$

- builds up the most stable elements ⁵⁴Fe or ⁵⁶Fe (depends on neutron excess)
- how far the "flow" proceeds depends on the temperature (which determines the flow rate) and the duration of the phase

Explosive Burning (e.g. during a supernova)

- carbon burning close to hydrostatic equilibrium
- but: oxygen and silicon burning do not necessarily estabilish statistical equilibrium
- at high densities: close to NSE
- at low densities (after expansion): incomplete burning, abundance pattern freezes out → intermediatemass elements
- reproduces the solar abundance pattern reasonably well (by nuclear physics standards)

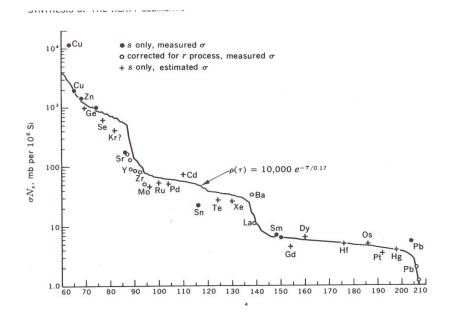

Supernova Nucleosynthesis

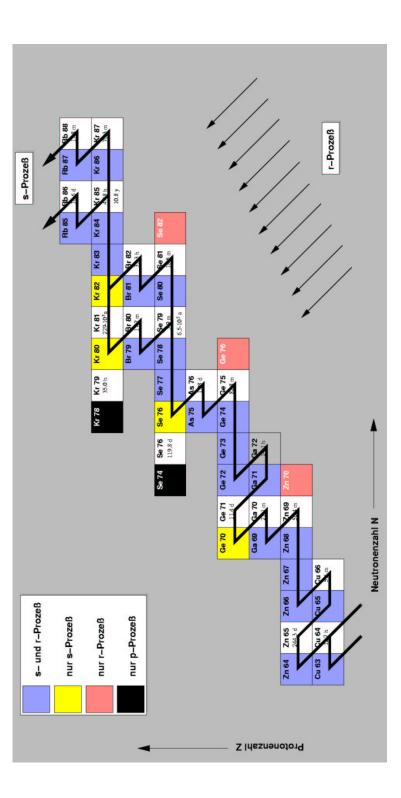
- different supernova types produce, different abundance patterns
 - ho core-collapse supernovae: most Fe is locked up in the core (at most $\sim 0.1\,M_\odot$ can be ejected)
 - ▶ large ejection of oxygen
 - \triangleright thermonuclear explosions: dominant producers of Ni (which decays into Fe; $\sim 0.6\,M_{\odot})$
 - ho different timescales for core collapse supernovae $(\sim 10^7\,{
 m yr})$ and thermonuclear explosions (up to $\sim 10^9\,{
 m yr})$
 - → oxygen/iron ratio evolves with time
 - → observational constraint on supernova explosions?
- complication: hypernovae eject both Fe and O and a lot of α -rich elements (Ca, Ti), but are probably not as common at early times (?)

Production of Heavy Nuclei $(A \ge 60)$

• produced by endothermic reactions

SYNTHESIS OF THE HEAVY ELEMENTS




• consider neutron-capture reactions (on Fe-peak seed nuclei)

$$(\mathbf{Z}, \mathbf{A}) + \mathbf{n} \rightarrow (\mathbf{Z}, \mathbf{A} + \mathbf{1}) + \gamma$$

- \triangleright if (Z,A+1) is stable, it waits until it captures another neutron
- ho if (Z,A+1) is unstable to eta decay (typically $t_{decay} \sim 10^5 10^7 \, s$), the further chain depends on t_{decay} and $t_{capture}$

- $t_{decay} \ll t_{capture}$: s-process (slow neutron-capture process)
 - $\triangleright \beta$ decay, s-process follows the "valley of β stability"
- $t_{decay} \gg t_{capture}$: r-process (rapid neutron-capture process)
 - \triangleright (Z,A+1) can capture further neutrons and produce elements (far) away from the valley of β stability
 - \triangleright eventually these elements β decay and produce stable neutron-rich isotopes

Astrophysical Sites for the s- and r-process

- \bullet s-process requires relatively low neutron densities (n $\lesssim 10^{26}\, m^{-3})$
- \bullet r-process requires relatively high neutron densities (n $\gtrsim 10^{26}\, m^{-3})$

• s-process

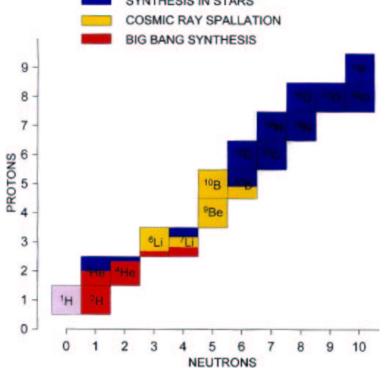
- ightharpoonup possible neutron sources (during stellar He burning) $^{13}\mathrm{C}(\alpha,\mathrm{n})^{16}\mathrm{O}$ or $^{22}\mathrm{Ne}(\alpha,\mathrm{n})^{25}\mathrm{Mg}$
- ▷ first reaction requires 13 C which is relatively rare, but produced during hydrogen burning via 12 C(p, γ) 13 N(e $^+\nu$) 13 C (CN cycle)
- → requires simultaneous hydrogen/helium burning
- or injection of freshly produced ¹³C into He-burning layers
- ▷ promising site: thermally pulsing AGB stars (with alternating hydrogen and helium burning)
- \rightarrow s-stars, barium stars
 - $ightharpoonup^{22}\mathrm{Ne} + \alpha$ only occurs at very high temperatures (e.g. in the cores of massive stars)

• r-process

- ▶ requires explosive burning
- ▷ e.g. in supernova explosion behind the supernova shock (probably not, conditions are only suitable for too short a time)
- ▷ neutron star/neutron star or neutron star/black hole mergers accompanied with very high neutron densities and the formation of neutron-rich nuclei

The p process:

- the origin of proton-rich elements is not well understood
- need e.g.


$$\triangleright (\mathbf{A}, \mathbf{Z}) + \mathbf{p} \rightarrow (\mathbf{A} + \mathbf{1}, \mathbf{Z} + \mathbf{1}) + \gamma$$
$$\triangleright (\mathbf{A}, \mathbf{Z}) + \gamma \rightarrow (\mathbf{A} - \mathbf{1}, \mathbf{Z}) + \mathbf{n}$$

ullet possible site: Thorne-Żytkow objects (red supergiants with neutron cores) where protons are injected into the burning region at very high temperature $(T\sim 10^9\,\mathrm{K})$

Production of light elements

• by spallation of intermediate nuclei (e.g. O, N, C) by cosmic rays

$$\{\mathbf p,\, \pmb{lpha}\} + \{\mathbf C,\mathbf N,\mathbf O\}
ightarrow {}^6\mathbf L\mathbf i,\, {}^7\mathbf L\mathbf i,\, {}^7\mathbf B\mathbf e,\, {}^9\mathbf B\mathbf e,\, {}^{10}\mathbf B\mathbf e,\, {}^{10}\mathbf B,\, {}^{11}\mathbf B$$

- origin of solar ⁷Li unknown, big bang nucleosynthesis and cosmic-ray spallation cannot produce the observed solar abundance
- → explosive H/He burning in giants?

The Chemical Lifecycle of Stars

